Simulation in Logistics Tour and Location Planning –
Two German Business Applications

Christina Westphal
Victor Kuchshaus
Philipp Düppe
Matthias Klumpp
Hella Abidi, FOM ild Essen

ESM 2012
October 23rd 2012
Essen, Germany
1. Introduction and Research Interest

2. Case 1: Green Transport Decisions (DEA)

3. Case 2: Production Location Decision (GAMS)

4. Conclusion
1. Introduction

- Logistics service providers as well as industry companies in Europe face strong influences from globalization as well as technology developments:
 - Successful research in information and communication technologies ICT;
 - increased competition within the market;
 - environmental awareness of loaders and customers (restriction);
 - rapid growth of transport volume in the future (restriction).
- Logistics has to be flexible and dynamic because of speed and shipment volume volatility demands - but often business strategies are based on human knowledge instead of ICT.
- Increasing interest towards simulation and modelling tools in order to enhance logistics decisions e.g. tour planning and routing, location, scheduling.
2. CASE 1

- European shipments from Germany (Ruhr area) to Italy (northern region) for a German chemical company.
- **Comparative Analysis** with real data sets using **DEA** in order to compare transport prices and carbon footprint as outputs of transport performance for truck & combined truck-rail transports.

<table>
<thead>
<tr>
<th>Data (Example)</th>
<th>Destination</th>
<th>Weight</th>
<th>Distance</th>
<th>Distance Milano-Dest</th>
<th>CO₂ Emiss. kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Bosco Marengo</td>
<td>Bosco Marengo</td>
<td>19,237</td>
<td>1,006</td>
<td>101</td>
<td>1,117.57</td>
</tr>
<tr>
<td>L-Brendola</td>
<td>Brendola</td>
<td>20,220</td>
<td>975</td>
<td>275</td>
<td>1,083.13</td>
</tr>
<tr>
<td>L-Arcole</td>
<td>Arcole</td>
<td>18,540</td>
<td>1,065</td>
<td>195</td>
<td>1,183.11</td>
</tr>
<tr>
<td>L-Bareggio</td>
<td>Bareggio</td>
<td>23,180</td>
<td>912</td>
<td>21</td>
<td>1,013.14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
2. CASE 1

Transport Map Germany-Italy
2. CASE 1
Main result:
Due to *detour length* (Terminal Milano) in most cases no productivity improvement with combined truck-rail transport alternatives.
3. Case 2

- **Automotive industry** in Europe with highly competitive and cost-sensitive supply chains.

- Transport costs usually determine production location close to OEM plants (Europe). Location costs decide about plant.

- Location question of cost-minimal location within Europe, application of a GAMS model (start draft for extension).

Energy Cost Data

<table>
<thead>
<tr>
<th></th>
<th>Electricity prices (per kWh)</th>
<th>Gas prices (per kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Households (1)</td>
<td>Industry (2)</td>
</tr>
<tr>
<td>EU-27</td>
<td>s2</td>
<td>s2</td>
</tr>
<tr>
<td>Euro area</td>
<td>0.164</td>
<td>0.173</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.173</td>
<td>0.182</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.186</td>
<td>0.197</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.082</td>
<td>0.083</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.139</td>
<td>0.139</td>
</tr>
<tr>
<td>Germany</td>
<td>0.255</td>
<td>0.271</td>
</tr>
</tbody>
</table>

GAMS

```plaintext
EQUATIONS
TeamMaKostenJahr(I)
TeamEnKostenJahr(I)
GesamtMaKostenJahr(I)
GesamtEnKostenJahr(I)
GesamtKostenJahr(I);

TeamMaKostenJahr(I) .. W2 =I= KgMaYear(I);
TeamEnKostenJahr(I) .. X2 =I= KgENYear(I);
GesamtMaKostenJahr(I) .. Y2 =I= KgMGYear(I);
GesamtEnKostenJahr(I) .. Z2 =I= KgEGYear(I);
GesamtKostenJahr(I) .. Z3 =I= KgMGYear(I) + KgEGYear(I);

MODEL
TRANSPORT /ALL/ ;
SOLVE
TRANSPORT USING lp maximizing Z3;
```
3. Case 2

- Wage and energy costs determine **Bulgaria** as favorite location in the European Union (exemplary data).
4. Conclusion

- For both cases the quantitative methods have provided first draft **decision support** (not always the obvious ones).
- Simulation **assumptions** have to be checked and adjusted in order to provide for more realistic results (e.g. 10% cost increase for combined truck-rail transport in Case 1).
- Nevertheless modelling and simulation is increasingly needed for complex daily logistics decisions – software as well as human competence **requirements** in business practice.
- Methods have to be **implemented in daily logistics practice** in order to gain experience and context data for supporting optimal decisions in modern transport settings.
Simulation in Logistics Tour and Location Planning – Two German Business Applications

Thank you for your attention.

Christina Westphal
Victor Kuchshaus
Philipp Düppe
Matthias Klumpp
Hella Abidi, FOM ild Essen