UNIVERSITY OF LEIPZIG

Institute of Production Management
and Industrial Information Management

Marschnerstr. 31, 04109 Leipzig, Germany
Phone: [49] / (0)341 / 4941-182, Fax: -125

Report No. 16

An Efficient Scheduling Algorithm
Based upon Threshold Accepting

Jukka Siedentopf

[Siedentopf@wifa.uni-leipzig.dé

- to appear -

March 1995



Index

1 Introduction 1
2 The Problem 1
3 The Algorithm 2
3.1 The lterative Search Process 2
3.3 The Scheduling Process 5
4 Test and Results 8
4.1 Data 8
4.2 Solution Qualities and Runtimes 9
4.3 Further Results 10
4.3.1 Impact of the Starting Configuration’s Quality 10
4.3.2 Some Remarks upon the Performance of TAMM 12
4.3.3 The Topology of the Solution Space 14
5 Comparison with Other Approaches 15
6 Conclusion and Outlook 18
References 19
Summary

A mutation-selection approach for theneral job shogcheduling problem ipresented. The
underlying algorithmusesthreshold acceptings an iterative search technique generating al-
ternative operation sequences for thachines otthe job shop. Search isombined with a
simple heuristic algorithm transforming operation sequences into a schefletgiveness of
the approach is demonstrateihin a comparison with some well-known heuristic @xact
algorithms, which in part are clearly outperformed.

Remark: Thisreport is a shorteneahdslightly changed version okport No. 4 of thénsti-
tute of Production Management and Industrial Information Management.
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1 Introduction

Facing combinatorial optimization problems, approxima#ipproaches are proposed as alter-
natives to somewhat more conventional approaches of mdtbahmogramming. Some of
these approaches make use of stochastic processes to prevent premature termioedion in
optima. A common characteristic tife proposed approaches is frnciple of generating

new solution candidates, so-callednfigurations by performing (stochastic) perturbations,
so-calledmutations of already availableonfigurations. Another characteristic is that the se-
lection of configurations permitted to ram inthe solution process depenust only on the
quality of the solution represented by the considered configuration but also on external para-
meters. Furthermore, the selection can be made in an either deterministic or probabilistic way.

The number ofnvolved configurations can serve as a classification critéaomutation-se-
lection procedures: Igenetic algorithmsa multitude of configurations is managed ipapu-
lation. Availability of several different configurations is an indispensable requirefoeme-
combinationof new configurations fronthe building blocks of alreadyavailableones. Re-
combination ighe predominating principléor generating configurations in genetic algorithms.
Mutation serves for adding new building blocksifplementing smaktochastic perturbations
in the available building material.

In another more simply structurethss of mutation-selectiapproachesynly one configura-
tion undergoes a process of mutationddécision as to selection reduced to adecision
whether a newmodified configuration vil replace the old one or ndExamplesfor such
procedures are threshold acceptsigjulated annealingr the geat deluge algorithm

The number ofnvolved configurations liits the number ofsteps in the solution spaaehich
can be examined durirgne iteration of theinderlyingprocess. The processes can thus be in-
tuitively classified asnultidirectionalandunidirectionalprocesses.

Complex scheduling problems have beenanremphasiparticularly ofthe application of ge-
netic algorithms sincabout themiddle ofthe 80ies(e.g. Forrest 1993PDespite evidensimi-
larities, unidirectional methodsnly occasionally have be@oncerned as an alternativeven
systematic comparisons tiie approaches areissing. The submitted contribution sketches
development and test of a scheduling algorithm baped threshold accepting. Th&gorithm
was originally developed fdhe purpose of a comparison witlsecific genetic algorithm and
adopts several modules of that algorithm (see sections 3.2 and 3.3).

2 The Problem

The considered scheduling problem is an incarnatiagheojeneral job shop schedulipgob-
lem (e.g. French 1982):
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njobs {J, &, ... , §} are to be processed on m machines{M, ... , My}.

* Each job is to be processed exactly once on emahinejprocessing a job onraachine
is also referred to as aperationor atask

* Each job must ruthrough themachines in a specific technologicatlgnditionedorder
(machine sequengeDifferent machine sequences for different jobs are permitted.

* The sequences the jobs are to be processed in on distinbinest@skor operation se-
guenceyare subject of disposal.

» The processing times dhe operations are known and constant, i.e. independent of
precedence relationshipSetupand transportation timesre notconsidered, and inter-
ruption of the processing of an operation is not permitied-preemptive caye

» The mission is to determirtask sequences respectimgchinesequences and optimizing
thevalue of a given objective function. the following, the objective ofminimizing the
period of time for complete processing of all jobsakespa)is considered.

3 The Algorithm

The presentedcheduling algorithm is based on threshold acceptiqgesented from Dueck
and Scheuer 1990 or - aspart of amulti-phaseprocess fiutation selection strategyith
destabilization phage from Ablay 1987. Threshold acceptirsgippliesthe basestructure of a
unidirectional iterative search process for generatingsatetting configurations (secti@nl).

A configuration represents a suggestion (@) the machinesequences. The sequences are
modified duringthe solution process (sectidh2), and for the purpose of evaluation a
configuration is transformed into a schedule by means of plesmauristic scheduling algo-
rithm eliminating occasionally occuring inconsistencies (section 3.3).

3.1 The Iterative Search Process

The considered algorithnT firesholdAccepting forM akesparM inimization -TAMM ) is pre-
sented in Fig. 1. The algorithm is initialized by a configurattamdidatg, a startvaluefor the
parametethreshold and an instruction determininige reduction othresholdin thelapse of
time. This instruction includethe quantity of the respective reductidhréshold_lower_step
as well aghe number of iterationafterwhich areduction is enforcecchange_threshold_3ll
Besides, a termination criterion is defined. The criterion indicaeesumber of unsuccessful
iterations (iterations withowny increase o$olution quality) leading to a termination of the
processrfiax_unsuccessful_trigls
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In step (1) thequality (makespan) othe configuration is determinedhis is performed by
timetabling the operations according to the proposed tssffluences by a modutalled

BUILD_SCHEDULE During this schedulingrocess itmight become necessary ébminate

inconsistencies within the task sequences (section 3.3).

In step (2)mutation is used to choose a new configuratimew(_candidatefrom the neigh-
bourhood ofcandidate For that purposesmall (local”) changesireinstalled inthe task se-
guences represtad bycandidate(section 3.2, see e.g. Aarts alorst 1989 for dormal de-
scription of neighbourhood structureslatal search)Again the quality of new_candidatas
determined byimetablingthe operations of the represented task sequenceq3¥tephedif-
ference of thegualities A E of both configurations is calculatédtep (4)),and an iteration
counter is actualized (step (5)) which is required for the reduction of the threshold in step (9).

If the quality of new_candidatedoes notexceed that one afandidate(A E < 0, step (6);
higher qualitycorresponds to lowanakespan and viogersa) a counteunsuccessful_trials
updated. Otherwisenew_configuration is stored as the best currembnfiguration
(temp_optimumand the countarnsuccessful_trials reset (step (7)).

In thefollowing iteration of TAMM rew_candidatevill serve as a workingasis if its solution
quality is better or not more thémresholdworse than that one candidate(step (8))Hence,

in the next iteration a new configurationllibe generated in the neighbourhoodnaw_can-
didate instead ofcandidate Thethresholdis modified instep (9) ifnecessary. Subsequently,
the termination criterion is examined (s{@)) and, according to the result, the proaateer

is interrupted or beginning withthe mutation in stef?) - is repeated. In thease of discon-
tinuance, the best configuration founténip_optimum is made available to any further
processing as an approximization of the aspired optinsofat{(on step (11)).

The underlying approximization process correspdadgely tothe better-knowsimulated an-
nealing(see e.g. Aarts anidorst 1989). Asignificant difference iglue to the acceptance of
new confgurations: In contrast teimulated annealing, threshold acceptiogs withouprob-
abilities of acceptance. Hence, tifi@mulation of acooling or annealing schedulea very
critical task inapplying simulated annealing (&arsts andKorst 1989, pp. 57, or Dueck and
Scheuer 1990, p. 162), is replaced by a (more simple) instructicthi@fshold decrease

3.2 Representation and Modification of Configurations

Originally, TAMM has been developed to be compared with an algorithm of Nakano and Ya-
mada based on “a@lassical'genetic algorithm (Nakano and Yamat91). Nakano and Ya-
madacode configurations as sequences of binary vallest{ingy and produce newonfi-
gurationsapplyingthe standardecombinationoperators oimutationand crossover(Holland
1975). The announcecbmparison should explore whether ihgact of a multidirectional
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search and theecombination irthe geneti@algorithm can compesate for the disadvantages of

a binary representation. On one hand, the rejection of recombination within threshold accepting
enablesthe introduction of asymbolic representation of configurations in TAMM. On the
otherhand, themodification and evaluation componentghie algorithm of Nakano and Ya-
mada are left unchanged in functionality - adapted only to the new representation.

THRESHOLD ACCEPTING FOR MAKESPAN MINIMIZATION
START
initialize candidate
threshold
threshold_lower_step
change_threshold_all
max_unsuccessful_trials
trials — O
unsuccessful_trials- 0
temp_optimum~ candidate
compute makespan (candidate) within BUILD_SCHEDULE (1
LOOP
select new_candidate in the neighbourhood of candidate 2)
compute makespan (new_candidate) within BUILD_SCHEDULE 3
AE — makespan (candidate) - makespan (new_candidate) (4)
trials « trials + 1 (5)

IF AE < 0 THEN (6)
unsuccessful_trials- unsuccessful_trials + 1

ELSE 7
temp_optimum— new_candidate
unsuccessful_trials- 0

IF AE > (-1)threshold THEN candidate new_candidate (8)

IF trials = change_threshold_all AND threshol® THEN 9)
trials — O
threshold— threshold - threshold_lower_step

UNTIL unsuccessful_trials > max_unsuccessful_trials (20)
solution — temp_optimum (11)
END

Fig. 1: TAMM

In the approach of Nakano and Yamada, task sequences are represdistsdoabinary
precedence values. A precedence funcpoecedenc@®;j, o) receives value 1, if job i is
processed before job k anachine j,and value O otherwise. The representation obiafi-
guration comprisesll precedence values amomgerations to be processed on Hane
machine. It is obvious that lists of binary precedence valoes noteccessarylyepresent
admissible sequences. Consider, for instance, for a machine x the following precedence values:

precedenc@®;,, 0p,) = 1 0 precedenc@®,,, 03,) = 1 0 precedenc@®,y, 03,) = 0
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Thetwo first valuesdenote thajob 1 should be processed before job 2 and jbbf@re job 3.
Because of théransitivity of the precedenceelationship, job 1 should have to be processed
before job 3, too. This, however, contraditts third precedencealue. Thughe above-men-
tioned bitstring(1,1,0) does nopresent germissible jolpermutation formachine x.For eli-
minatingthe sketchedhconsistencies, Nakano and Yamauapose aepair algorithmcalled
local harmonizationwhich shouldproduce apermissible jobpermutation for aconsidered
machine while “flipping” a minimal number of bits.

Since binary coding ithe approach of Nakano and Yamada seondsfor the applicability of
conventionalcrossover and mutatiooperatorsand threshold accepting works without these
operators, it can dispense with a binary representation. Schedubesladdirectly astask se-
quences, which are entered in a matrix row by row fomithgidual machines. In Fig. 2 an ex-
ample of a configuration for the processing of 4 jobs on 4 machines is presented.

1Stposition | 2'd position| 39 position | 4N position
M, J 5, 1 I,
M, 1 I 5 3
M3 b N Ji Ja
My Ja N Ji b

Fig. 2: Representation of configurations

In the describedmplementation of TAMM, neighbourhood solutiorzse generated by
exchangingwo randomly chosen elementstime job sequence of a randomly choseachine
(simple modificatiopor by repeating this change n timesf¢ld modificationwith n>2). This
mutation operator always generatgsh permutations as complete and - rmachine level -
permissible task sequences. Thus, local harmonization is not required in TAMM.

3.3 The Scheduling Process

The task sequences codedconfigurations arescheduled by means of a gi@heuristic al-
gorithm. As a basic element of this algorithrschedule conditioms formulated whiclsettles
that a job i can be scheduled on a machine j if, and only if

* jis the current machine according to the machine sequence of job i and
* iisthe current job according to the job sequence of machine j.

By means of this schedule condititme algorithm presented in Fig. 3 can imeplemented.

First, a quantity of all operations not yet schedulews¢heduled_operatiopss initialized with

all operations to be scheduled (step (1)). An iteration of the scheduling process is introduced, if
this quantity isnot empty (step (2)).Within aniteration, theschedule condition isxamined

(step (5)) for each machine (lo¢f)). Occasionally, a concernegeration is scheduled on the
correspondingnachineand removed fronthe quantity ofunscheduled operations. Besides, a
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flag calledat_least_one_operation_scheduledhich has been initialized step (3),indicates
that in loop (4) an operation has been scheduled.

If in a run of loop (4) no operation could beheduled on any machirtee underlying confi-
guration contains a type aficonsistency which is manifested by mutually blockiagk se-
guences of different machines. The elimination of such an inconsisteny is carried out by another
repair algorithm introduced by Nakano and Yamawdled global harmonization(module
GLOBAL_HARMONIZATION in step (6)).

BUILD_SCHEDULE
START
initialize unscheduled_operations @
WHILE unscheduled_operatio#s{} LOOP (2)
at_least_one_operation_scheduled~ALSE 3)
FOR all machines LOOP (4)

IF schedule_condition (operation) THEN (5)
schedule (operation)

unscheduled_operations unscheduled_operations \ {operation}
at_least_one_operation_scheduledlRUE

IF NOT at_least_one_operation_scheduled THEN (6)
call GLOBAL HARMONIZATION

END

Fig. 3: Scheduling algorithm

Fig. 4 illustrates the problem of blocking using a simple example of processing two jobs on two
machinesThe rows of thenachinesequence matrix indicatee sequence for eaghb (J; and

J), themachines (M and M,) must be run through. The rows of tjud sequence matrix
(configuration) indicate the proposed processing order of both jobs for both machines.

Machine sequence: Configuration:
18t position| 2'd position Bt position| 2d position
Ji M1 M> M1 N Ji
N M M1 M Ji N

Fig. 4. Blocking on schedule level

The interpretation of theonfiguration’s firstow in Fig. 4yields that J has to wait in front of
M, until processing ofJJis finished. According tats machine sguence, Jis to be processed
on machine M first - and has to wait in front of thatachine untiprocessing of {Jis finished
(secondrow of theconfiguration matrix). Howevethis isnot permissible, since according to
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the second row of the machine sequence matii th be processed on,Nbefore - and istill
waiting there for Jto be finished.

Because the sketched typeimtonsistencies on schedule levehst recognized before sche-
duling is performed, thementioned repair algorithm is embedded itite schedulingprocess.

Unlike local harmoraation,global harmonizatiomloes not work on theriginal binaryrepre-
sentation anymore, but on a derived symbolic representation like that presented in Fig. 4. Thus,
the originally proposed repair algorithm could be integrated in TAMM.

In the case of &locking,the task sequence of a singhkachine ischanged during global har-
monization in a way that a job is given priority whikthfils the schedule condition for the
considered machine. For a jgwhich is still to be processed on a machir]ethm function

distance(J;, Mj),

indicatesthe number of jobs preceding dccording to the task sequence qf By means of
the function distance the structure of thglobal harmonization can be depictedfakows

(Fig. 5):

GLOBAL_HARMONIZATION
START
FOR all § O unscheduled_jobs LOOP (1)
select next machine Mrom machine sequence ¢f J

compute distance;(JM;)

Dmin < min;; (distance (J M;)) (2)

select M. with distance (J M;x) = Dy, for any J (3)

remove Jfrom the job sequence ofjl\/l 4)

shift first Dip, jobs in the job sequence oijor one position 5)

insert Jin the first position of the job sequence qﬁ M (6)
END

Fig. 5: Global harmonization

First, for eaclelement of aset of notcompletely scheduled jobsr{scheduled_johghe next
machine, according to itmachinesequence, is selected, and viakie ofthe functiondistance
is calculated for the selectethchine(step (1)). Thaninimum B, of all calculateddistance
values is determinetbtep (2)),and themachine holding thaminimum isselected (steg3)).

Because Nakano and Yamadardu indicateanytie breaking rule fothe case that thenini-

mal distance is determined for more than one job, in the considepbeinentation of TAMM
such conflictsare solved by choosing the first-fourmdhimum. The corresponding jobolding
that minimum ismoved into thefirst position ofthe task sequence of the selecteachine
(steps (4)and(6)). Thereby, allthe jobs to be processed befdree consideregbb acoording
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to the current task sequence of thachineare shifted byone position (stefg5)). Subse-
guently, thescheduling algorithm resumes wigkep (2) in Fig. dusingthe modified task se-
qguence.

Performingthe describedcheduling algorithm alway®sults in a fasibleschedule, inwvhich
starting and completion timeseassigned to eaabperation. Themaximum ofthe completion
times ofall last operations of the task sequengdet®rmineghe value ofthe objective function
(makespan) of the considered configuration - presupposed that processing starts at the time 0.

4 Test and Results
4.1 Data

TAMM has beertestedusingthe data sets dfisher and Thompsomhich have beeepstaltis-
hed in literature as often used benchmarks (Fisher and Thorhp&8n pp. 236). Thugom-
parisons with a variety of other algorithfos thejob shopschedulingarepossible. The results
presented in théollowing affectthe problems of processing 10 jobs onmachines ("10x10-
problem”) as well agprocesing 20 jobs on 5 machines ("20x5-problenThe optimum
(minimum) values of the makespan 889 units of timefor the 10x10-problem antil65units
of time for the 20x5-problemespectively. Theomplexity ofthe consideretiest prdlems is
illustrated by the fact, that determination of @ptimum schedule fothe 10x10-prblem
(including proof of optimdity) succeeded for thérst time only after more than 20 years of
research (Carlier and Pinson 1989).

Results are presented faik differentparametrizations of TAMM as listed in Tab. 1. Parame-
ters are the startingalue ofthe thresholdtbreshold, thenumber of iterationafter which the
threshold is reducectljange_threshold_3ll and the termination criteriorm@x_unsuccess-
ful_trials). Since inthe calculation ofthe makespan onlinteger values caoccur, thevalue of
thresholdis always reduced fagxactlyone unit (parametehreshold_lower_stem Fig. 1).
The last row in Tab. 1 indicates the number of repetitionss of TAMM with the respective
parameter setting.

setl set 2 set 3 set 4 set b set|6
threshold 15 100 30 10 5 30
change_threshold_all 10,000| 1,000 1,000, 10,000 1,000 10,0pO
max_unsuccessful_trials 30,000 10,000 3,000 20,000 3,000 10p,000
runs 1,000 200 200 200 200 100

Tab. 1: Parameter settings
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4.2 Solution Qualities and Runtimes

Tables 4 and Hlisplaythe results of the tests for bgpnoblems withregard to theachieved
solution qualities and required runtimes. The results refer to a Pascal-written implementation of
TAMM on a PC 80486 (66 MHz). As to solution qualities, the following values are cited:

* the best solution of all runbést solutionoptimum values are marked by bold types),
» the mean of the solutionséan solutioj

» the average deviation of the solutions from the optimum in percent
(average dev. from opt. [%]

» the standard deviation of the solutioetafdard deviatio))
» the mean variation of the solutiomadanvariation),

and concerning runtimes, respectively:
 the mean runtime in secondamsgan runtimg;, [sec]),

 the mean runtime for detecting the best solution in secomen(runtimgeg{sec]).

setl set 2 set 3 set 4 set b set|6
best solution 930 951 979 930 1015 951
mean solution 1000.87| 1045.58 1046.48 1006.54 1120.86 994.26
average dev. from opt. [%0] 7.62 12.43 12.52 8.23 20.52 7.3
standard deviation 2443 | 26.03| 23.63] 23.85 4522  22.59
mean variation 596.65| 677.80 558.17 568.88 2044/53 510|19
mean runtimg [sec] 273.95| 192.43 54.11 | 193.57] 13.26] 646.1B
mean runtimgeq[sec] 180.39| 173.99 47.68 | 112.53] 8.84| 438.1p
Tab. 2: Results for the 10x10-problem

setl set 2 set 3 set 4 set b set|6
best solution 1165 1198 1192 | 1165 1264 1173
mean solution 1205.48 1296.34 1289.59 1212.74 1380.76 120p.94
average dev. from opt. [%0] 3.47 11.27 10.69 4.10 18.52 3.26
standard deviation 21.18 35.45 34.97 25.47 40.19 21.715
mean variation 448.78 | 1256.71 1222.88 648.67 1615/15 472|88
mean runtimgy, [sec] 390.00| 268.00 76.34 | 264.55| 20.37| 914.1p
mean runtimgeg[sec] 285.07| 244.62 69.00 | 186.83] 14.50] 641.1p

Tab. 3: Results for the 20x5-problem
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The shortestuntimes measured for detectitige optimum makespan values 880 and 1165,
respectively, have beév.22seconds for the 10x10-problem (set 4) afi@.28seconds for
the 20x5-problem (set 4).

The cited parameter settings (Tab. 1) were not determined analytically, but moegilstrioita
trial-and-error-procedure: First, tloaly requirement foany combination of parartex-vdues
has been anaximumruntime of 10 minute¢600 seconds)Set 1obtains best results for both
problems in that caskater,comparisons with parameter settingading to mean runtimes of
clearly over 10minutes showed thahe results of set 1 coultardly be improved within the
realized implementation of TAMMSet 6serves as an example: An extensiorithefruntime
(mean runtimgy;5) from approximatelyt.5 toalmost 11 minutes (10x10-problem) ainom
approximately6.5 to over 15minutes (20x5-problem), respectivelyields only slight im-
provements of mean solution qual{jyst aboutapproximately2.6 units of time) asvell as of
the standard deviation and mean variation values.

Comparison oket 2andset 3elucidates that TAMM reactgery sensitively tahe choice and
combination othe parametevalues despite its sple paametrizationSet 3leads to compa-
rable results in less than 30 % of the runtime on aveFagethel10x10-problem almost identi-
cal mean solution valuese determined agell as an evesomewhat slighter deviatiohpw-
ever, the best solution found is 28 unitgiofe worse,when compared teet 2. For the 20x5-
problemset 3even dominates withegard to the presented resutisice allvalues ofthe best
solution found asvell as ofthe mean solution quality awell as ofstandard deviation and
mean variation are better than those determined with set 2.

Set 4obtains the best results with regard to determinatiaptfnum solution qualitiesince
these valueare found faster than witet 1. Set Serves as an examgiar results TAMM is
able to produce facing restrictive runtime-requirements.

4.3 Further Results
4.3.1 Impact of the Starting Configuration’s Quality

The results presented above have beeluced by creating the starting configuration ran-
domly, i.e. permutations of job sequenae® createdandomlyfor each madhne. As a rule,
TAMM starts with configurations of quite a bgdality (see Tab. 4). Texplore thenfluence

of the quality ofthe configuration TAMM is starting witliyvo akernatives were tested on the
10x10-problem:

1. The algorithm ofGiffler and Thompson (Bler and Thompson 1960) is used to produce
starting configurations. The algorithm aysgenerates an active schedule as an schedu-
le, in which it isnot possible tostart theprocessing oainy operation earliewithout de-
laying the processing of at least onéher operation. Thgob sequencesyhich are
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implicitly contained in the generatesthedule serve as anitid configuration for
TAMM. Subsequently, TAMM is started with parameter values of set 4.

2. TAMM is running in atwo-phased process: First, it is starwgth set 5,terminating af-
ter approximately 13 seconds on average (& 2).Subsequently, it is startedwith
set 4 using the solution calculated in the first phase as an initial configuration.

The results of the testseach repeated 2Q@nes(200 runs) - araummed up iTab. 4 et 4
(G&T) andset 5 & set % and are opposed to the results of mae4 (see Tab. 2). buddition
to already introduced value$ab. 4 indicateshe mean value ofhe startingconfiguration’s
quality (mean initial solutioh as well aghe simple correlationoefficient betweerthe starting
configuration’s quality and the best solution foucarielation coefficient

set 4 set4 set5 &
(G&T) set 4

best solution 930 936 952
mean solution 1006.54 1004.51 1007.91
average dev. from opt. [%] 8.23 8.01 8.38
standard deviation 23.85 31.92 21.99
mean variation 568.88 1018.72 483.46
mean runtimg, [sec] 193.57 186.48 191.93
mean runtimgeq[sec] 112.53 104.02 109.91
mean initial solution 3329.55 1334.57 1112.60
correlation coefficient 0.002 + 0.003 + 0.004

Tab. 4: Results for different initial configurations (10x10-problem)

According to thevalues ofTab. 4, asignificantcorrelation between thiaitial configuration’s
guality andthe best solutions found domset exist. Fig. 6displaysthe convergence GFAMM

as development of the solution qualitytire lapse of time, foboth arandomly chosenun and

an optimumrun, respectively (set 4, 10x10-problem). The graph providestteer plausible
explanation foithe abovementioned result: Even witbet 4TAMM reaches afteonly a few
seconds the same solution qualities it was initialized with in the above mentioned alternatives .

There is no satisfactory explanation &rother phenomenon: the extraordinbigh deviation
values resulting when TAMM is initialized with configurations which have been gedevidh
the algorithm by Gifflerand Thompson. It caonly be supposed that amitialization with
configurations representing active schedules tendsirtder the algorithm: Because active
schedulesare somehow pre-optimized with regard to theirer structure, itmight be more
difficult to achieve improvements by simply exchangiwg operations. Anyhow, an guimical
confirmation of this hypothesis has yet to be given. Fig. 7 givemfontation of the conver-
gences of a randomly chosam with initialization by the Giffler/Thompson-algorithmget 4



An Efficient Scheduling Algorithm Based upon Threshold Accepting -12 -

(G&T)) and without thainitialization (set 5 & set # each for thdirst 10 seconds (withithis
timeslot the ¢et 5 & set #run equals gure €et 5-run, because in the presented run an
exchange to parameter valuesset 4 is carriedut notuntil 12.8 seconds). The graph shows,
however, that convergenceastually very slow irthe area of the (activajitial solution, and
particularly slower than that one of thee{ 5 & set %run at about the same level of quality.

makespan
3000 —

: optimal run

- :randomly chosen run

{ runtime [sec]
200

Fig. 6: Convergence of solution quality (10x10-problem, set 4)

makespan
3000 +

——— :set4 (G&T)

- rset5 &set4

1300+ — — e

11004 - - - - - - T

930 } } } } { runtime [sec]
0 2 4 6 8 10

Fig. 7:  Convergence of solution quality feet 4(G&T) andset 5 & set 4

4.3.2 Some Remarks upon the Performance of TAMM

Above all, mutation-selectioapproaches have achievpobmising results in applications for
traveling salesman problents.g. Dueckand Scheuer 1990 or Dueck 1993).symmetric
traveling salesman problems, modified configurations eaityebeproduced bybreaking up
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two or more connectionsvithin a tour and knotting new connections between itelved
nodes such thatgain a validour isproduced. A feature of that procedure is thatiéingth of
a new tour does not have to be calculated completely new. Instead, the length ofdhe isld
decreased by theum ofthe lenghts of broken-up connections and increasetthéiengths of
newly knotted connections which can directly be taken frgiven distance table. In ctoast,
to determinethe quality of a new configuratiofior a scheduling problem, it igenerally
necessary tareate acompletely new schedule - evafterslight changes ahejob sequences
as the proposed exchange of only two operations in the job sequence of one machine.

In the describedmplementation of TAMM the number of accomplished exchangesopéra-

tions - and thereby of required complete scheduling runs - amounts partly to a few hundred
thousandsUsing set 6, forexample the threshold is reduced down fronvalue of 30 every
10,000 iterations. Thus, a rueaching a threshold of O requirdse building of at least
300,000 complete schedules. The performance asdheduling algorithnthus has an essen-

tial influence on the performance of TAMM.

The implemented heuristic scheduling algorithm requide815 milliseconds onaverage to
build up a schedulor the 100 operations of the 10x10-problérhis holdsunder the condi-
tion that theunderlying configuratiomepresents germissiblesolution, so no repair-function-
ality is needed to create valid task sequences.

The number of configurations representing inagible solutions, resulting fronarbitraryly
exchangingpperations in the task sequences, is anatifleential factor to the performance of
the system. Atest showed that simplenodifications of admissibleonfigurations produce
inadmissibleones with a probabilty of approximately 34 % - forcoails ofthe repair algo-
rithm (global harmonization) in these cases. The required ruitimeuilding up a schedule
increases up t0.93 milliseconds oraverage. It should be pointedt that notonly the inad-
missibility of a configuration is responsible for the increase of runtime requiremgraiso the
“level of inadmissibility” which isndicated bythe frequencythe repairalgorithm is called wile
generating a schedule. Additionally, a (smp#)t of theincrease fron0.615 up to 0.93nilli-
seconds is caused by the process ofbdification itself, although thipart is lesghan 0.02
milli seconds.

Using 2-fold modificationshe quota of inadissibleconfigurations increases to approximately
44.5 % and theesulting runtime requiretbr building up a schedule tb.14 milliseconds on
average. Although allowedyulti-fold modificationswere notconsidered in furthelests,since
they showed worse convergence as opposed to the simple modification in some early tests.

Building up a schedule witthe algorithm of Gifflerand Thompson requires 1.@38lliseconds
on averageAnyway, the algorithm is less suitable as a scheduling algorithm within TAMM,
since as input it receivesly the (given) machinesequences and tljgiven) procesing times
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as well as amperatorwhich rulesthe selection of an operation to seheduled on apecific
machine incases of conflice.g. apriority rule). A conflict-setcomprisesall operationswvhich
could be processed currently at a specific machine and whose earliest possible priitessing
overlap with the processirtgne of areference operatianA conflict-set is always formed for
that machine on whicthe processing cdny operation could bénishedearliest. Thecorre-
sponding operation is the reference operation. Thus, variatioeswfing schedules camly

be generated byarying the selectioroperator (thainculdesthe possibility of solving each
conflict individually). However, a changed choice ofspecific operation from a conflict-set
generally implieshanges of the compositions af the conflict-sets to be formed afterwards.
As a result, the control of the search process is lost, because it is no longer possible to generate
“similar” configurations in a given neighbourhood.

By contrastwithin TAMM, a (limited) similarity of configurations can be supposed in accor-
dance with neighbourhood definitiof@ continuous functions: From thisllows that confi-
gurationswhich are similar with regard to their representation muat@similar solution qua-
lities, too. Similarity ofrepresentation could be measured,éeample, ashe number ofope-
rations holding different positions the task sequences wfo configurations. Thissimilarity
supposition” isslightly supported by thepproximately continuous convergence of TAMM
(see Fig. 6). Supposed that no correspondence between representation andysalittiaran

be ascertained (like arguéor a combination of TAMM andhe Giffler/Thompson-algorithm
above), any search algorithm might behave as a random search process.

4.3.3 The Topology of the Solution Space

In view of missingtechniques for theisualization of multi-dimensionapaces illustrations of
solution spaces of complex optimization problems afésort to thedea of a mountain range.
Hikers in the mountain ranggmbolize algorithms isearch of théighest peakmaximization
problems) or the deepestlley (minimization problers). Even if this kind of illustration ight
be quite avivid one, itseemsnot to bevery suitable, since @annot alvays explairthe success
(or even the failure) of the algorithms.

Regarding the 10x10-problem aselt 4, thehiker could be e.g. a parachutebding on a pla-
teau at an altitude of about 3,300 meteredn initial solutionin Tab. 4: 3,329.55) and
proceeding in search of the deepedtey, whichcan be found at an altitude of exactly 930
meters. Thus, he has to overcomdiféerence in altitude of approximateB400 meters. Con-
sidering e.g. that set 4 does mdiow anystepleadingmore than 10 metershfesholdin Tab.

1) in height and that this limitatiogets the more restrictive the lower thi&er comes, it ap-
pearsimpossible to leave even smaller vallaysce they have been reached. Desfiis
TAMM almost always reaches valleys not more than 120 m above the deepest valley.

Two possible explanations of this phenomenon could be:
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The idea of a hiker isot appropriate: On onlgand, no continuous surface to move on
exists. On thetherhand, due to thamperfect neighbourhoodefinition generating new
configurations doermot neccessarilgorrespond tdittle steps in thémountain range of
quality”. The hikeratherjumpsthan walks - turning back tthe starting point, if the
calculated landingoint is locatedigher tharthe current locatioplusthe current thres-
hold.

Many more deepralleys seem to blecated in thé mountain range ofuality” than one
might suppose from geograph¥his hypothesis was confirmeatrough a sirple test:
For each of the botproblemsoneoptimal configuration (with a makespan value of 930
and 1165respectively) was taken as muitial configuration. Following, neighbourhood
solutions were generateding simple modifications unt@nother solution with optimum
makespan was found. Tipsocedure was repeated Sidesfor both problems. Result:
for the 10x10-problem, 408ifferent solutions with a makespan @80 were obtained
and for the 20x5-problem even 485 different solutions with a makespan of 1165.

5 Comparison with Other Approaches

Concluding,the presented resultslMbe compared to the results of somiher authorsising
the same “problem artefacts” of Fisher and Thompson presented in section 4. These approaches

are:

Both variants of the shifting-bottleneck-procedure of Adams, Balas and Zawack (Adams,
Balas, and Zawack 1988) (ABZ1 and ABZ2)

The first variant ofthe shifting-bottleneck-procedure (ABZ1) is based on an iterative
process optimizing the task sequence of a current bottleneck machine locally, in the sense
of a one-machine-problem. In a following step, thek sequences of tiiethermachies,

even if determined beforeharate (re-)optimizedvhile leavingthe task sequence of the
current bottlenecknachineunchanged. The second variant of #igfting-bottleneck-
procedure (ABZ2) uses the first variant to determine an optimum path in a partial search-
tree through the sequences the non-bottleneck-machines will be (re-)optimized in.

The algorithm of Fang, Ross and Corn (Fang, Ross, and Corne 1993) (FRC)

The algorithm FRC is a genetic algorithm usingymbolicrepresentation (linedists of
operations) asvell assome recombinationperatorswhich have beexleveloped espe-
cially for sequencing problems. As sketched for TAMM, generation of schedules is done
by a simple heuristic scheduling algorithm.
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» Two algorithms of Nakano and Yamada (NY and YN)

Thetwo approaches of Nakano and Yamada are genetic algorithms, tobadJibedeas
of thealgorithm NY (Nakano and Yamad&®91)have been introduced in section 3. The
approach of the algorithm YN (Yamada and Nakano 1992) is basedyonbalicrepre-
sentation asvell as on adistinct crossoveoperator,usingthe algorithm of Giffler and
Thompson to recombinate new configurations.

» Two algorithms of Dorndorf and Pesch (Dorndorf and Pesch 1992) (DP1 and DP2)

The approaches of Dorndorf and Pesch (agbrid) genetic algorithms, too. THiest

one (DP1) uses thedgorithm of Gifflerand Thompson to generate schedulewelsas

the mentioned before algorithm YN. During the evolutionary process of the genetic algo-
rithm, sequences of priority rulese producedvhich can beused to solveconflicts

within the schedulingprocess of th&iffler/Thompson-algorithm. The second algorithm
(DP2) is based on the second variant of the shifting-bottleneck-algorithm. Genetic search
aims at aroptimum sequence of (re-)optimizitige task sequences ioflividual machi-

nes.

» The algorithm of Carlier and Pinson (Carlier and Pinson 1989) (CP)

The algorithm of Carlier and Pinson iScassical’branch&bound approach. gchedule
is generated during the branching-proceddetermining exactlpne of thetwo possi-
bilities of processingvo operations on aachine ineachstep. Thebounding within the
algorithm is based on the solution of one-machine-problems.

* The algorithm of Barker and McMahon (Barker and McMahon 1985) (BM)

The algorithm of Barker and McMahon also representdaasical'branch&bound ap-
proach. Contrary t&arlier and Pinson, aode of the search-treewalys represents a
complete schedule. New schedutes producedrom givenones bymodifying the se-
guence of jobs within a distinctitical block of the schedule. Aritical block is formed

by a set of operationshich aresuccessivelprocessed on aachine.The last operation

of the critical block is the first operation of the schedule which is finished in time with the
currentminimum ofthe makespan or later. As withe approach ofarlier and Pinson,
bounding is rested on the solution of one-machine problems.

Tables 7 and 8lisplaythe results of thenentioned approaches ftire 10x10- and the 20x5-
problem, respectively, comparing them wiltte results achieved by TAMM witbet 4.Run-
times valuesre rounded off, if necessary, and fowpdimum values as well a®rresponding
runtime valuesare marked by bold typeBor TAMM the shortestuntime for detectingpti-
mum values is occasially given in brackets. Exactuntime valuesfor TAMM are 184.5
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(97.22) seconds and 277.31 (178.28) secamdpectively. The term.v. states that noalue
is given in the original literature.

FRC | NY | YN | DP1| DP2| CP| BM| ABZ1 ABZ2 TAMM

best solution 949| 965 930 | 960 | 938 | 930 | 960 | 1015] 930 930
runtime [sec] <1500 n.v.| 600 932 106 3305 193 10 891184 (97)

Tab. 5: Comparison of solution qualities for the 10x10-problem

FRC | NY | YN | DP1| DP2| CP| BM| ABZ1 ABZ2 TAMM

best solution 1189 1215 1184 1249 1178B165|1303] 1290| 1174 1165
runtime [sec] <1800 n.v.| n.v.| 1609 95| 1234 132 3 80277 (178

Tab. 6: Comparison of solution qualities for the 20x5-problem

Remarks:

* Due todifferentcomputersystems serving as bades the implementation anthe test
of thedifferent approaches, no direzmimparability ofthe stateduntime values is given.
The following computer systems are indicated by the authors:

- FRC: SUN-4

- YN: SUN SPARCSstation 2
- DP1, DP2: DECstation 3100

- CP: PRIME 2655

- BM: Cyber 171

- ABZ1, ABZ2: VAX 780/11

For thealgorithm NY no detailsbout the used hardware gieen. Assuming that with
regard to their computationgdower all listed systems dominate thanhe used for
TAMM (PC 80486, 66 MHz), theuntime values listed above underlitie quality of
the results achieved with TAMM.

* The branch&bound algorithm CP provée optimality ofthe calculated solutions. Con-
sideration of these proofs leads to runtime4 4885 seconds (!) (10x10-problem) and
1,448 seconds (20x5-problem), respectively.

* The good results of both variants of the shifting-bottleneck-procedure (ABZ1 and
ABZ2) could not always beconfirmed in reimplementations other authors (see e.g.
Dorndorf and Pesch 1992)ithin their reimplementation, Dorndorf and Peschieved
combinaions of solutionqualities and runtimegor ABZ1 and ABZ2 asfollows:
1031/0.5 seconds and 951/186 seconds (10x10-problemglbaas 1274/0.4 seconds
and 1240/10 seconds (20x5-problem).
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» Details givenabout thealgorithm NY arelimited to the achieved solutioqualities. The
algorithm has been reimplemented by Rohmann S8kld SPARCstation 1(Rohmann
1993). Rohmann runs tests over sections of the 10x10-problem (so-called scenarios, each
containing a subset dfie 10 jobs) andtated averagauntime values of 51 minutes for
scenarios with 50 operations (or 5 of the 10 jobs, respectively). For a single run using the
entire 10x10-problem, a runtime off®urs and 20ninutes isstated.Within this single
run, the parameters proposed by Nakand Yamada, i.e. a population sizel600 and
150 generationdjave beemused,while tests over thenentioned scenarios were accom-
plished with a population size 600 over 300 generations. Nakano and Yangagano
detailsabout further parameters, e.g. about crossamdrmutation rates, lsetion me-
chanisms etc.

Since TAMM surpassed these results of NY considerdidjinitially announced exten-
sive comparison of both algorithms has been omitted.

» Although thealgorithm of Barker and McMahofBM) essentially is an optimizing al-
gorithm, optimum valueare notfound since runtime limitationaere introducedvhen
calculating lower boundaries for the makespan.

6 Conclusion and Outlook

The results achieved with TAMM demonstrate tvahin the application forcomplex optimi-
zation problemgood approximizations of optimum solutions can be achieved by means of
simple mutation-selection approaches. On one hand, regarding the results vialltkeown
benchmark-problems of Fisher and Thompson, TAkkEs itsplace amongghe best known
algorithms for job shopgcheduling. Particularly, none die comparealgorithms found the
optimum valuedor the given problems irsimilarly shorttimes - although TAMM hadeen
implemented on the comparatively weak hardware basis of@0R86. On the othdrand, the

high deviation of solution qualities indicates a significant weakness of the approach.

Up to now no parameter tuning has been introduced. More, arbitrarily chosen parameter values
were tried in single runs and the most encouragmmbinations of parameter values were
selected afterwards. An adjustment of theslkeies resultednly from the effort toadmitter-
mination ofthe algorithmnot until a thresholdevel of 0 isreached. Thus, systematic parame-

ter tuning wil be anobjection to further development of TAMM. Particulanbgssibilities of
self-adaption of the parameters should be expldres.appears to be promisingapproach,
especiallybecause of the simple parametrization of TAMM compared to gealgbathms or

to simulated annealing.

Mutation of configurations offers another starting point for improvementthdmresented
version of TAMMthe operations affected by a mutation are selected by sheeFaradom-
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parison themplementation of a bottleneck-sensitive version is planned that introduces a modi-
fication operatorpreferring exchanges of operatidyimg on acritical path in a graph-oriented
description of the underlying schedule.

With regard to the practicapplicability of TAMM, the adaptibility ofthe algorithm must be
proved.This is particularly valid, becausepaoof of effectiveness using artificigroblem-data

can at most be a necessargt however asufficient conditionfor applicability inoperational
systemsFor instance, fronthe point ofview of efficiency employment ofAMM as a short-

time scheduling module within an interactikststand systenis conceivable. Ircontrast, a
proof of adaptability to the specific requirements in a real-world planning environment is still to
be produced.
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