A Net-Theoretic Approach for the Construction and

Analysis of Logically Based Problem Descriptionst!

By S. Zelewski?

Abstract: The construction and analysis of OR-problems
are considered under the assumption that the problem
structures depend essentially on logical constituents.
The convéntional approach to use binary ("0/1") varia-
bles suffers from models which are very complicated and
intransparent. The nature of logical constituents is
not "adequately"” represented by complexes of binary
variables. As an alternative the net-theoretic approach
can be used to construct graphical problem descrip-
tions. These descriptions base on the propositional or
predicate logic and the theory of Petri nets. The re-
sulting net models have the advantages of compactness
and easy interpretation. Furthermore conventional alge-
braic algorithms can be applied to the analysis of net
models. The efficiency of model construction and analy-
sis is not considered. Instead of this the preceding
 aspect is explored which contributions to problem mod-
elling result from combining logic, net theory, linear
algebra and graphical problem description. Some exam-
ples demonstrate these results. They especially concern
the design of annual balance sheets of stock corpora-

tions with regard to corporate income tax.
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1 Logically Based Problem Descriptions for Decision

Models

Decision models, which formally represent real decision
problems, are often designed as algebraic programs
("OR-programs"); see Bitz (1977), Laux (1982), Ellinger
(i985), Kern (1987). Each program regularly possesses
a multi-dimensional space of possible problem solu-
tions. These problem space is a subspace of the carte-
sian product of all variables thgt occure in the pro-

gram definition.

The search for an intended - e.g. bptimal - problem
solution can be efficieﬁtly realized as far as the
problem space is dense (and convex). Therefore it is
mostly tried to construct OR-programs with real-valued
variables. The density-assumption for the problem space
can be regarded as adequate if the variables represent

real entities to be measured on metric scales.

Such a real-valued representation of problem
constituents looses adequacy if logical aspects must be
modelled. This holds at 1least for the «classical
propositional and predicate logic which allow only two
distinct truth wvalues. These both versions of logic are
supposed in the following?®. The 1ogical aspects of a
problem can be separated into two categories. The first
category concerns subproblems of the yes/no-type that
require decisions whether an action should be done
("yes") or not ("no"). The second category reflects
logical dependencies between problem constituents, for
example between partial deci..ons or between a decision

and its real conseguences.

Both categories of logical aspects are usually mod-
elled in OR-programs with the help of binary logic var-
iables xi with domains Di={0;1}. They are called deci-
sion (indicator) variables if they represent subprob-

lems of the yes/no-type (locical dependicies); see

3 TReal-valued logics that may be grounded on fuzzy set
theory or theories of evidence are not considered.



Williams (1985). The resulting problem descriptions are
mixed integer programs which suffer from a great struc-

tural and computational complexity.

The computational complexity grounds on the combina-
torial explosion of possible problem solutions - with
regard to a increasing number of problem describing bi-
néry logic variables - and the fact that techniques of
differential calculus cannot be [directly) applied to
mixed integer programs; see Forrest (1974), Gabriel
(1982), Williams (1985). The gquantitative aspect of
computational complexity does not’play any role in the
following, because the efficiency of problem solution
is beyond the scope of this explorative study. Further-
more the analysis of net models which will be presented
later is subject to the same difficulty of combinato-
‘rial explosion, at least in the case of analyzing net

invariants.

The structural complexity describes a qualitative
‘characteristic of decison models based on binary logic
variables. Such models are generally very extensive and
complicated problem descriptions because of great num-
bers and multiple interlockings of logic variables; see
for example Gabriel (1982), Williams (1985), Johannt-
gen—-Holthoff (1986) and Boos (1986). Especially the
representation of logical dependencies between deci-
sions and their consequences often leads to intranspa-
rent comglomerates of decision, indicator and "normal"
variables. The inherent complexity of the resulting de-
cision models impedes validating and using the models.
For egample it is hard to justify a recommended deci-
sion alternative when the underlying decison model is
so complicated that nobody understands the model - ex-

cept der model designer itself.

For that reason there is a heéd for model construct-
ing techniques which allow more transparent represen-
tations of logical aspects in decision models. One pos-
sible approach (among others) to overcome the lack of

transparency of conventional OR-programs 1is the con-



struction of graphical problem descriptions. They base
on the experience that graphical models are compacter
and easier to understand as the "variable-conglomerats”

of OR-programs.

Graphical modelling techniques should fulfil two ad-
ditional requirements. On the one hand they should make
it possible to systematically derive the representation
of logical problem aspects from a description of these
aspects expressed in natural language (constructive re-
quirement), because most real problems are firstly cir-
cumscribed with natural languagerstatements. The deri-
vation is designated as systematical if there exists a
scheme which enables to derive representations for all

logically expressable problem descriptions.

On the other hand it is desirable that the graphical
models can be analyzed with the help of algebraic tech-
niques which are computerized executable {analytical
requirement). Such techniques are selected since they
have widely been proved to be successful with respect
to analytical purposes. The additional postulate of
possible computerization reflects the practical point
of view that analyses of real problems usuallj consume
great amouts of information processing réssources.
Therefore they can often realized only if they are
automatically executed by software implementations of

the analytical algorithms.

Two reasons motivate to discuss the modelling of
logical aspects of real problems. Firstly OR-models
depend on such logical aspects in many ways, even if
their logic: ™ nature does not always appear explicitly.
Examples for logical aspects are priorities for se-
quencing and scheduling of Jobs, requirements of exclu-
siveness and completeness in allocation models (like
the allocation of warehouses) or the existence of fixed
capacity costs which can be eliminated in the case of
producing nothing; see for more examples Williams
(1985) .



‘ Secondly an increasing number of publications re-
flects the combination of operations research and arti-
ficial intelligence; see Bullers (1980), Miiller—Merbach
(1984), Thornton (1985) and Neumann (1987). The logi~—
cally based representation of knowledge is one of the
most important concepts for the description of problems
which have been developed by artificial intelligence
researchers. Therefore models with explicitely repre-
sented logical aspects will pléy a greater role 1in
future OR-applications. Especially it is intended to
integrate algorithms that are wellknown for the solu-
tion of special OR-models into expert systems. Such ex-
pert systems shall serve as intelligent models and
methods storage bank systems in order to assist their
users in solving a wide range of problems. Even outside
the context of artificial intelligence problem descrip-
tions with explicit representation of logical aspects
gain increasing attention for business applications. In
Bonczek (1981) e.g. the design of decision support sys-—
tems is described which ground on predicate logic fomu-

las for the construction of decision models.

2 Construction of Net Models

2.1 Net-Theoretic Foundation

The theory of Petri nets offers one way to construct
graphical models which are able to represent logical
aspects of the underlying real problems and fulfil the
two forementioned constructive and analytical require-
ments. An additional reason to concentrate on Petri
nets is the fact that these nets are often used for
logically based knowledge regresentations; see Zisman
(1978), Azema (1984), Mainz (1984), Giordana (1984),
Fidelak (1986a) and Fidelak (1986b). This corresponds
with the trend to combine operations research and arti-

-

ficial intelligence stated above.
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For the purpose of simplicity the following argu-
ments refer only to logical aspects which can be for-
mally expressed as formulas of propositional logict.
Under this assumption it is sufficient to deal only
with place/transition-nets which are a simple and
easily intelligible version of Petri nets?. A
place/transition-net is a 6-tupel N=(p,T,F,K,W,Me) for
which the following definitions hold:

- P={p31j=1,...,J} is a finite set of atomar objects
which are designated as places and graphically re-
presented by circles. Places méy be marked by an ar-
bitrary number of tokens which are movable, undis-

tinguishable atomar objects.

- T={t1(i=1,...,I} is a finite set of atomar objects
which are designated as transitions and graphically
represented by rectangles, usually squares. Transi-
tions can change the distribution of tokens over
places by reméving and dropping tokens. Each such
change is called the occurence or firing of a tran-

sition.

- " Fc{((PxT)y (TxP)) is the flow relation. Each element
of this relation 'is an ordered pair (ps.ti1) or
(ti ,p;) which expresses a flow of tokens removed

from or dropped to place p; by firing transition ti.

4 See Esser (1977) and Stegmiiller (1983) for precise
explanations of the calculus of propositional logic.
The concentration on propositional logic is admissible
because most logical aspects of OR-problems can be
expressed with the help of propositions; see Williams
(1985) and Johanntgen-Holthoff (1986). One of the rare
exceptions is the description of a flexible manufac-—
turing system by Bullers (1980), which is based on
predicates. But this model originates from an aritifi-
cial intelligence context, not from a operations re-
search study. See Lautenbach (1984), Mainz (1984) and
Fidelak (1986a) for the special difficulties concerning
the computational complexity which arises when the
structure of net models shifts from propositional to
predicative formulas.

5 See Jantzen (1980) and Reisig (1987) as introduc-
tions in the theory of place/transition-nets.



The element of the flow relation is graphically re-
presented by an edge directed from the (circle for)
place p; to the (square for) transition ti or from

the transition ti to the place pj3 ., respectively.

- K: P -> N+uf»} is the capacity function which as-
sighs a capacity K{(ps) of tokens to each place p;®.
The capacity K{pj)=e is chosen if there does not
exist any finite limitation for the number of tokens

on a place pj.

- W: (PxT)u(TxP) -> No ié the weight function which
assigns a weight W(xa,x%») to each ordered pair
(xa ,%p) consisting of a place and a transition?. If
the pair (Xa.x%») 1is an element of the flow relation
F the weight W(xa .X») must be positive, otherwise it

equals zero.

- Mg: P -> No is the initial marking function of the
net in its original state. It assigns an arbitrary,
but finite number Mo (p;j) of tokens to each place pj
which holds as long as no transition has been fired.
Mo={Mo (p3 )| 3J=1,...,J)tr is the marking vector of the
net in its original state and is designated as ini-

tial marking.

The graphical representation of a place/transition-net
N=(P,T,F,K,W,M0o) is a bipartite, directed, inscribed
graph. The set X=PUT of nodes is bipartite Dbecause
nodes of place- and transition-type can be distin-
guished. The flow relation F is identical with the set
of directed edges. The partial tupel TOPx=(P,T,F) which
contains only the nodes and édges of the graphical net
representation is designated as the topological net

structure.

The graphical net represenation is enlarged by in-
scriptions. Nodes pj, which represent places, are in-
scribed with capacities K(pj) and with Mo (p;) dots for
tokens that belong to the places under the initial

e

6 N+ is the set of all natural numbers without zero.

7 No. is the set of all natural numbers including zero.



marking Me. Edges (Xa.,X») are inscribed with the
weights W(Xa ,%»). Nodes xa and x» which are connected
by an edge are called incident, the corresponding edge
(%Xa ,Xp) Or (Xb,x%a) is designated as adjacent to node Xa
and x» . Each place p; which is connected with the tran-
sition ti by an edge (pj.,ti) or (ti,ps;) is called an
input- or output-place of the transition, respectively.
pre(ti)={p;s eP|(ps ti)eF} and post(ts )={p; eP|(t1 ,ps)eF}
are the sets of all input- and output-places of transi-

tion ti, respectively.

For the topology of place/transition-nets hold three
premises which ensure that places and transitions are
well distinguished objects, empty nets do not exist and

there are no isolated nodes of place- or transition-

type:
PNT = ¢
PUT # ¢

PUT = dom(F) y cod(F)
with: dom(F)={xXae(PUT) | V (%p & (PUT) : (xa ,xp ) eF}
with: cod(F)={xp e (PUT) | V (Xa e (PUT) : (Xa ,%Xp ) eF}

In the following two further assumptions hold. Firstly
d11 places ©pjeP possess the same token capacity
K(p; )=1. Therefore it is not necessary to inscribe
places with capacities. All places psy can only be
marked in two admissible manners. Either they are
marked according to M(p;)=1 or they are unmarked ac-
cording to M({p;)=0. Secondly all edges (xXa,X%bv)eF have
the same weight W(xa.,%Xp)=1l, so that inscriptions of
edges with weights may be neglected. Therefore the

weight function can be simplified to:

W: (PxT)u(TxP) -> {0;1} ‘
1; if (xa ,Xp)eF
0; if (Xa ,Xp )¢F

{x%a ,Xb ) -> W(Xa ,Xp )=

The static net structure is condensed in the incidence
matrix € with I columns for the transitions tieT and J
rows for the places pj¢P.-Each component c¢i.; indicates

whether transition ti 1is connected with place p; and



denotes - if they are incident - the direction of their

connections :

W(t: ,p3)=1 : if (ti,pj)eFA(p;.,ti)¢F
W(t: ,p3)-W(ps, t1)=1-1=0; if (ti,p;i)eFA(ps . t1)eF
€137 ) o; ; if (ti,ps)¢FA(ps, ti)¢F
-W(ps ,t1)=-1; ; if (ti,p3j)¢FAlps  t1)eF

The dynamic net structure consists of two parts. Thé
first part is given by the initial marking Mo which
constitutes a boundary condition for all admissible
evolutions of the net behavior. ‘The second part is a
firing rule which is not explicitely defined in the 6-
tupel mentioned above. But the firing rule establishes
the main difference betweén net theory and conventional
graph theory. It enables to produce a new marking by
firing a single transition - or a set of transitions?® -
under a given marking, so that a net may be regarded as
a family of graphs with identical topologies, but vary-

ing markings.

Séme definitions are required for the formal speci-
fication of the firing rule. All involved markings are
defined 1ike +the dnitial marking Mo as vektors
M=(M(p;)| j=1,..,J)tr with underlying marking functions
M: P —> No. A firing vector ti={cx|x=1,...,I)*'r is as-
sociated with the firing of a transition ti in such a

manner that for all components c¢x of the wvector holds

.8 The coefficients c¢i.j cannot distinguish between the

case of no connection - i.e. (ti,p;)¢F and (pj ., ti)¢F -
and the case of l1-loops which are defined by the simul-
taneous holding of (ti,ps;)eF and (p;,ti)eF, since

ci.j=0 holds in both cases. The two edges of 1l-loops
are artificially eliminated by constructing incidence
matrices. Therefore 1-loops cannot adeguately treated
by incidence matrices. But the special problems that
may be caused by 1-loops need not be considered in this
article because the constructed nets contain no such
loops (so-called "pure" nets) as far as they do not
express tautologies; see chapter 2.2.

9 The concurrently firing of several transitions is a
special feature of Petri net theory which enables the
modelling of non-sequential processes. It is neglected
in the following, because it does not play any role
with regard to the representation of logical problem
aspects.
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cx=1 iff x=1i and cx=0 iff =x#i. The predicate AKRKT(t: , M)
is wvalid iff transition ti is activéted under marking
M, i.e. iff the firing of transition ti would not cause
forbidden markings. Such markings would occure if the
firing of the transition would lead to negative token
"numbers" on its input places by removing tokens or
would exceed the token capacity of its output places by
dropping tokens. Therefore the acﬁivation of a transi-

tion ti under a marking M is definied by:

AKT (ti ,M) :<=> ... )
(A (psepre(ti)): M(ps)}2W(ps. ti))
A (N (psepost(ti)): M{ps)+W(t:i,ps)-Wlps, ti)<K(ps))

Regarding the forementioned assumptions for the capac-
ity function K and the weight function W the definition

of predicate AKT(ti , M) can be reduced tol0:

ART(t1 M) ::<=> ...
( A (pse{pre(ti)-post(ti))): M(p;)=1)
A ( N(pse(post(ti)-pre(ti))): M(p; )=0)
A (N (pje(pre(ti)npost(ti))): M(ps)=1)

Now the firing rule can be formally specified as a par-
tial function FR for which holds:

FR: T x No7v —-> No“
(ti M) -> M'=M+C-ti; if AKT(t:i M)

Under each marking M an activated transition may but
need not be fired. Transitions which are not activated

~must not be fired.

An admissiblé behavior of a net consists of a se-
quence of transition firings starting from the initial
marking and obeying the firing rule. Such a firing
sequence is notated by a tupel FSq=(tici1).,ti(zy,...,
ti¢z)). During the execution of the sequence occure 27

firings of - not necessarily distinguished - transi-

10 In the case of an 1-loop with (pj.ti)eF and
(ti1 ,ps)eF it is assumed that the involved transition ti
is activated iff the incident place pj3 possesses exact
one token. This assumption is not necessary but often
used in net theory.
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tions ti(z) with z=1,..,Ztt. The firing vector ta=(cx|
x=1,...,I) counts in each of its components cx how
often the corresponding transitions ti with i=x are
fired in the firing sequence FSq. If a firing sequence
FSq starts under a marking M - for example the initial
marking Mo - and leads to a new marking M', it follows
from the recursive application of the firing rule:

M'=M+C- tq .

A marking M is designated as reachable with respect
to a given initial marking Me iff it exists at least
one firing sequence which starts under the initial
marking Mo and leads to the marking M. A transition
which is not activated under any reachable marking is
called a dead transition or fact. A net whose transi-
tions are all dead under the initial marking Me is a

fact-net.

2.2 Construction of Net Models Representing Logical

Problem Aspects

The place/transition-nets introduced above allow to
systematically transform any description of logical
problem aspects into an equivalent net-theoretic repre-

sentation!2. The only premise which must be assumed for

11 In this article only finite firing sequences are
considered so that ZeN: holds. But infinite f£firing
~sequence are also admissible in net theory.

12 See Thieler-Mevissen (1975), Thieler—-Mevissen
(1977) and Lautenbach (1985) for the underlying con-
struction ideas.
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this construction of net models is that the logical

problem description grounds on propositional logicts.

The construction scheme rests on the possibility to
compose every proposition in a recursive manner with
the help of some atomar propositions and propositional
operators. Although the consideration of the operators
fér conjunction (or alternatively: adjunction) and ne-
gation is sufficient in order to compose any arbi-
trarily complex proposition, the operators for conjunc-
tion ("and"), adijunction ("or"™ in’its inclusive sense),
disjﬁnction ("or" in its exclusive sense) subjunction
("if..., then...") and negation ("not") are examined.
This enables a direct and- easy transformation of state-
ments expressed in natural language into components of

a corresponding net model.

Each atomar proposition P; 1is represented by an
atomar net N3 with the topological structure TOP;=
(fps}.{t1},{(t1,ps)}). The characteristic component of
this structure is the place p; which is marked with one
token iff the proposition is trﬁe14. Therefore the
transition ti must be dead iff proposition P;j is true

under all reachable markings.

The negation -P; of an atomar proposition P; is re-
presented by a complementary atomar net N-; which d4if-
fers from the net N; only relating to an inversely

directed edge. Therefore it possesses the topological

13 The following arguments and constructions c¢an be
extended to descriptions of logical problem aspects
based on predicate logic (of first order) by replacing
place/transition—nets through predicate/transition-
nets. But this extension leads only to a complication,
but not to fundamentally new insights. Therefore it is
neglected in the following. See Lautenbach (1985},
Fidelak (1986a), Fidelak (1986b) and Zelewski (1986)
for more detailed discussions of possible extensions to
predicate logic and reductions of predicative problenm
descriptions to propositional descriptions.

14 On the contrary, the place pj3y 1is unmarked - i.e.
M(pyj)=0 - iff the corresponding proposition P; Is
false; for only the markings M(ps;)=1 or M(p;)=0 are ad-
missible under the above introduced assumption of token
capacities K{(pj)=1 for all places p;cP.



structure TOP-;={({p;j}.{ti},{(ps.ti1)}). The characteris-
tic place p; is unmarked iff the proposition =-P; 1is
true, i.e. iff the underlying proposition P; 1is false.
For that reason the transition ti: is dead iff the prop-~

osition =P; is true for all reachable markings.

In the net-theoretic representaions of both atomar
pfopositions P; and negations -P; of atomar proposi-
tions Pj the characteristic places p; substitute the
propositions P;. Therefore it can be stated in a sim-
plified sense that each place pj; frepresents" an atomar
proposition P;. The (un)marking of this place indicates
that the corresponding atomar proposition P; 1is true
(false). The incident transition ti is a fact iff the
proposition P3y or =P; which is represented by the
atomar net N3 or N-3 {(respectively) is true for all

reachable markingst3.

The adjunction P3jvPx of two atomar propositions P
and Px is represented by the union of the two corres-
ponding nets N;j and Nk, respectively. The union is con-
structed by identifying the two transitions of both
nets as the same transition ti. The places p; and px,
which are characteristic for the propositions Pj3 and
Px, are common output-places of the transition ti.
Therefore it follows for the topological structure

TOPjvk of the composed net Njvx :
TOPsjvk = ({ps.pel} ., {te}, {{tsi,ps),(tsi,px)l})

If the adjiunction containo the negation of an atomar
proposition the corresponding characteristic place is
the input-place of the common transition ti. Therefore
the adajunction -P3yPx 1is represented by the net N-jvx

with the topological structure:

TOP-jvk = ({ps ,px}. . {ti}, {(ps. . ti),(t1,px)})

15 Because of the monotonicity of propositional logic
a proposition must remain true if it has once been
proved to be true. Therefore the formulation "... for
all reachable markings" can be omitted for all net re-
presentations of consistent problem descriptions.
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The net-theoretic representations of the adjunctions
PjV-Px and -PjV-Px are constructed in an analogous man-
ner. The constructions for adjunctions of more than two
atomar propositions or their negations obey the same
scheme. In each case the places which are characteris-
tic for the involved atomar propositions are output- or
input-places of a transition which is unique for the

whole adjunction.

A tautology is a logically true proposition, i.e. a
proposition that is true under all possible circum-
stances. Every tautology can be reduced to a proposi+
tion of the type P;jVv(-P;j). Following the representation
technique for adjunctions of atomar propositions this
tautology is represented by a net Njy-j, which consists
of an 1-loop. The topological structure of such an 1-

loop is given by:
TOPjv-3 = ({psjt.{ta}, {(ti ., ps), (ps.ti)l})

Tautologies are logical constructs that do not repre-
sent any empirically meaningful knowledge. Therefore
tautologies are neglected as components of logical de-
scriptions of real problems in the following. The nets

without 1-loops constitute the class of "pure" nets.

The disjunction P;VPx of two atomar propositions Pj
and Px is represented by the union of the corresponding
atomar nets N3y and Nk, respectively. But this kind of
union differs from the construction explained before
with regard to adjunctions of atomar propositions. The
transitions of the both nets N3 and Nk must be dis-
tinct, so that they get the indices i and h with i#h.
The resulting composed net Njvx has the topological

structure:

TOPJVK = ({pj lpk}f{ti fth}f ...
{ (1 ,p3).(ti,px),(pi, tr),(px.,tnl})

A third kind of net union is required for the represen-—
tation of the conjunction PjAPx of two atomar proposi-
tions P; and Px. The corresponding atomar nets N; and

Nx , respectively, possess once again distinct transi-



tions ti and tn, respectively. But there are only two
edges defined in the composed net NjAx, whose topologi-

cal structure is given by:
TOPsAx = ({ps.pxl.{ti.tal,{(tt,ps). (tn,px)})

The net Njax consists of the two disconnected subnets
N3 and Nk, because edges are missing which could con-
nect the distinct transitions. The cases of negated
atomar propositidns' and of more than two involved
atomar propositions are treated analogously to the con-

structions for adjunctions of propositions.

The subjunction P; —>Pr of two atomar propositions Py
and Px 1is represented by‘another union of the corres-
ponding atomar nets N3 and Nk . respectively. Once again
the transitions of both atomar nets are identified as a
transition ti. The characteristic places p; and bpx
become the input— and the output-place of this transi-
tion, respectively. The resulting composed net Nj-x

possesses the topological structurel®:

TOPj—x = ({ps.,pxt. . {ti},{(ps., t1),(ti,px)})

All composed propositions which are complexer than the
propositions discussed above can be reduced to those
simple propositions with the help of inference rules
for the substitution of logically equivalent proposi-
tionst?. But it is easier to generalize the preceding
constructions to the representation of conjunctive con-

nected clauses.

The base for this generalization is the logical
théorem that every finite proposition P - with arbi-
trary complexity — can be equivalently expressed in the
conjunctive normal form; see Chang (1973). All logical
aspects of a finite problem description can be trans-—

formed into such a conjunctive normal form. A finite

16 This construction follows immediately from the re-
presentations of negations and adjunctions explained a-
bove: for it holds the equivalence: Pj—»Px <=> (~Pj)VPx.

17 The rules of de Morgan are examples for such infer-
ence rules: =(PjAPx) <=> (=aPj)v(-Px) and - (PjvPx) <=>
{(=~P35 ) A{~Px) ‘
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proposition P fulfils the conjunctive normal form if it
is a conjunction of clauses Ci: P<=>CiA...AC: with
IeN+ . Each clause Ci (with i=1,...,TI) is either atomar
or a adjunction of pairwise distinct 1literals Li.r:
C1 <=>Li.1V...vLi.ri with Ri &N+ . Each literal Li.r (with
r=1,...,Ri1) is an atomar clause, i.e. either an atomar
proposition P; or the negation -P; of this atomar prop-—
ositiont®. Therefore any logical problem description P
based on propositional logic can be represented with
the help of atomar propositions P;, clauses and con-
junctions of clauses. The net Np which represents the
complex propositional problem description P 1is con-

structed as follows:

-

- establish for each c¢lause Ci of proposition P a

transition ti;

- establish for each atomar proposition P; a place pj
if this proposition is contained in at 1least one

literal Li.r of at least one clause Ci:

- connect a transition ti with a place p; by an edge
which is directed from the transition (place) to the
place (transition) 1iff the corresponding 1literal
Li.r is defined as an atomar proposition Li.r=Pj; (as

a negated atomar proposition Li.r=-Pj).

For each clause Ci it results — as a generalization of
the. constructions for negations &and adjunctions of
atomar propositions -~ a subnet Ni with one transition
ti and Ri distinct places pj. The topological structure
TOP: of this subnet is defined by:

TOP: = ({pj(1),..-.,Pi(rix}, {1}, ...
{ed(pic1y,ti),...,ed{ps(riy . t1)})
with:
ed (ps(ry  t1)= (ti1 ,p3): if Li.r=P; is a literal of Ci
(pj,t1); if Li.r=-P; is a literal of Ci

for all r=1,...,Ri4

18 The same atomar proposition must not be contained
in more than one literal of the same clause; but it may
be the component of several literals which belong to
different clauses.



17

The complex proposition P, which is a conjunction of
the I clauses Ci, is represented by the net Ne. This
net results from the union of the subnets Ni corres-
ponding to the clauses Ci . The union of subnets is con-
structed in the same manner as the union of atomar nets
for the conjunction of aiomar propositions. The result-
ing net is usually connected because places pj which
are characteristic for atomar propositions P3 are often
contained 1in several clausel fepresenting subnets.
These common places are identified with eachother so

that they integrate the subnets.

Fig. 1 summarizes all net-theoretic constructions
for the representation of atomar propositions, for the
negation, adjunction, disjunction, conjunction and sub-
junction of atomar propositions and for the generalized

case of clauses.
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atomar proposition P;

negation of the
atomar proposition Pj

adjunction of the atomar
propositions P; and Px

disjunction of the atomar
propositions P; and Px

rl

conjunctibn of the atomar
propositions P; and Px

subjunction of the atomar

propositions P; and Px

clause Ci composed by
atomar propositions
P1, P2, Pz and Pq:

Ci <=> (=P:1)}V{(aP2)VyPsVPsq

Fig. 1:
of logical problem aspects

net—-theoretic constructions for the modelling
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The systematical construction technique which is
based on clauses and their conjunctions fulfils the
constructive requirement. The construction scheme cov-
eré all possible logical problem descriptions, because
it holds for any proposition in conjunctive normal form
and every proposition about logical problem aspects can
be expressed in this normal form. The net Ne that re-
presents such a problem describing proposition P is the

intended net model of the logical problem aspects.

The construction of a net model N may be regarded
as "natural”. Problem descriptions in natural language
can usually be reduced to elementary logical structures
which stem from propositional logic. It is possible to
transform such propositions systematically and directly
into net-theoretic representations. No artificial logic
variables, which often represent such logical problem
aspects in an indirect and complex manner, are neces-—
sary; see for the usage of those variables in conven-

tional OR-programs e.g. Boos (1986).

The natural representation of logical ©problen

aspects especially holds if they are described with

"If..., then..."-statements. Such statements are wide-
spread both in business contexts as decison rules - for
example as components of decision tables - and in arti-

ficial intelligence applications as production rules
for ruled-based knowledge representation. Decision‘and
production rules are - if they are restricted to prop-
ositional logic - subjunctions of atomar or composed
propositions and can always be transformed into eqguiva~-
lent clauses. Therefore the generalized construction
scheme based on conjunctions of clauses is a straight-
forward technique to derive net models from rule-orien-

ted problem descriptions. '
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3 Approaches for the Analysis of Net Models
3.1 Analysis on the Ground of Fact-Nets

The construction of net models explained above leads to
fact-nets, in which each transition - now called a
"fact" - is not allowed to be fired, i.e. should be
déad under every reachable marking; see Thieler—-Mevis-
sen (1977) for such fact-nets. Therefore a net model
with a concrete marking of its places corresponds with
a consistent description of logical problem aspects iff

no transition is activated under that marking.

Otherwise - if at least one transition is activated
and can be fired - there must be a logical contradic-
tion in the problem description. The activated transi-
tion indicates which clause and which involved atomar
propositions of the problem description cause the
contradiction. The detection 6f such inconsistencies is
very simple. For each transition of the net the activa-
tion-predicate AKT(t: ,M) must be proved to be valid. It
was shown earlier that this prove can be reduced to the
algebraic test if the actual marking of the net fulfils

two simply structured equality systems. If it holdsi?9:
( Alpsepre(ti)): M(ps)=1) A (A (pjepost(ti)): M(ps)=0)

there must be a contradiction in the modelled problém
"description, for the "fact" t;i is inadmissibly acti-
vated. This inconsistency is caused by the assumption
that all propositions P; associated with the input-
places p; are true and all propositions P; associated
with the output-places p; of transition ti are false.

This assumption is implied by the marking of the input-

19 For the two equality systems pure nets representing
no tautologies are supposed. If impure nets shall be
considered, too, the following equality systems have to
be checked:

( N (pselpre(ti)-post(ti})): M(p;)=1)
A ( A (p;se(post(ti)-pre(ti))): M(p;)=0)

Y

A { Nlpse(pre(ti)npost{ti})): Mps)=1)
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and output-places with one or =zero token(s), respec-

tively, which activates the transition ti.

The main advantage of net models concerns descrip-
tions of real problems which are so voluminous1that it
is very hard to keep control over the implications of
a;l logical problem constituents. In such cases compact
and transparent net models can be constructed in order
to apply computerized, simply . structured algebraic
algorithms for automatically detecting contradictions.
In chapter 4.2 an example for detecting an inconsis—
‘tency in the context of a balance sheet design problem

is outlined.

The detection of inconsistencies in fact-nets
grounds on the net-theoretic concept of markings. Each
marking represents a meta-proposition about the truth
of those atomar (object-)propositions which constitute
a logical problem description.. This meta-proposition
possesses a situative quality, because its validity may
vary in accordance to actual problem situations. The
problem situation is defined by the assignment of truth
values to all problem describing atomar {object-
)propositions. The lastmentioned propositions them-
selves and their logical connections form the structure

of a logical problem description2?9.

Therefore a detected contradiction can rest on two
different causes. Either it is grounded on an inconsis-
tently described problem situation or its base 1is a
structurally inconsistent problem description. In the
fist case the contradiction can be resolved by changing

the assignment of truth wvalues, i.e. by varying the

20 Correspondingly to this distinction a description
of logical problem aspects is called structural iff it
refers only to atomar propositions and their connec-—
tions in composed propositions but does not reflect the
possible truth wvalues of those propositions. On the
contrary, such a description is denotated as situative
iff it is grounded on a structural description and con-
tains an assignment of truth values to all atomar prop-
ositions. The truth values of the composed propositions
can be determined with the help of truth tables which
are defined for each propositional operator.
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marking of the net model in such a manner that no more
transition remains being activated. With the help of
the net model as a transparent description of logical
problem aspects it must be analyzed whether the for-
mally resolved- contradiction agrees with the real prob-
lem. If this can be shown then only the description of

the actual problem situation was wrong.

Otherwise - if there exist no consistent marking
variations or if the formal marking variations do not
agree with real problem situations - the second case of
a structurally inconsistent problem description occurs.
The analysis of fact-nets does not cover difficulties
of this kind, because it is marking-dependent. On the
contrary, structural analyses must abstract from the
actual problem situation which is expressed by meta-
propositions about truth values and is represented in
nets by ﬁarkings. An net-theoretic approach that ena-
bles such an abstraction is the invariant analysis ex-

plained in the following.

3.2 Analysis on the Ground of Invariants

The invariant analysis of nets allows the detecting and
exploration of structural inconsistencies in net-based
logical problem descriptions. It neglects every con-
crete marking of a net, since it holds for any reacha-
ble marking. Only pure nets without 1-loops are ana-
lyzed2z?t . Furthermore a special form of invariant ana-
lysis is considered in order to apply Lautenbach's net
theorem. In this context two additional assumptions are
required. Firstly it is abstracted from finite token

capacities. Secondly initially unmarked nets with the

21 This assumption was already Jjustified in chapter
2.2 by excluding tautologies. It is required because
invariant analyses ground on incidence matrices (C,
which cannot adeguately cover 1l-loops.
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zero-marking Mo=0Q0 -~ i.e. with Mo (p3;)=0 for all pjeP -

are supposed.

Invariants of place/transition-nets are defined with
simple algebraic equalities; see Lautenbach (1987).
They refer only to the incidence matrix C of nets.
Therefore they describe structural aspects of the prob-
lems whose logical constituents are modelled with the

help of nets.

Invariants are definied as special kinds of T- and
P-vectors. A T-vector is an I-dimensional column vector
t. Its components cox fulfil the reguirements cxgZ2?,
x=1,...,T and I=#(T) and correspond.to transitions ti
with identical indices i=%. Accordingly a P-vector is a
J-dimensional, integer column vector p., whose compo—
nents ¢y with cyeZ, y=1,...,J and J=#(P) correspond to
places p; with identical indices j=y. A T- or P-vector
is called semi-positive iff none of its components is
negative and at least one component is greater than
zero. A vector is called trivial iff each of its compo-

nents equals zero.

A T-invariant is a T-vector for which C-£=0 heolds. A
subnet of the underlying net with incidenc matrix C is
denotated as the graphical representation of a semi-
positive invariant t iff it contains all transitions t
which correspond with positive components cx in the
invariant t (with i=x) and all places/edges which are

incident/adjacent to these transitions.

Since the firing rule FR of place/transition-nets
defines a follower marking M' of a reference marking M
by M'=M+C-t, a sémi—positive T-invariant may be inter-
preted as the firing vector of a firing sequence Whiéh
reproduces the reference marking because of M'=M+0=M.
However, it must be stressed that this interpretatién
has to be justified by applying the firing sequence

which agrees with the firing wvector &t to fhe reference

22 Z denotes the set of integers.



24

marking M28 ., Because the fulfilment of the equaiity
mentioned above only reflects the effect of transtion
firing, the activation-predicates have not been con-
sidered. Therefore a firing sequence with a T-invariant
t as firing vector, which seems to reproduce the refer-
ence marking, may be inadmissible since at least one of
the "fired" transitions 1is not activated under the
marking that is produced by carrying out the firing

sequence up to this transition.

P-invariants are complements of T-invariants. A P-
invariant is defined as a P-vector'which fulfils the
equality ptr-C=0tr. Sﬁch P-invariants express proper-
ties of net models that -‘hold "invariant" with respect
to wvarying net markings. Those characteristic struc-
tural problem aspects can be used for problem analysis.
But the interpretation of the "real meaning” of P~
invariants often causes difficulties that arise when
there are no strong connections between the formal com-
ponents of the underlying P-vector on the one side and
"relevant" aspects of the modelled real problem on the
other side. Therefore P-invariants are not the main
topic of this article. They serve only for defining the

following net theorem.

Lautenbach (1985f has formulated and proved a theo-
rem?4 which holds for every net model of problem as-
pects stated in propositional logic as far as three
conditions are fulfilled. Firstly the model must be

finite?2% ., Secondly finite token capacities of places do

23 It is possible that more than one firing segquence
agrees with the'firing vector given by a T-invariant t.
This happens when several firing sequences possess the
equal firing-numbers for each transition but differ
with respect to the ordering of firing acts.

24 See also Fidelak (1986a) and Fidelak (1986b).

25 This does not restrict the practical importance of
the net theorem, since every problem description that
is formulated with the help of finitely many proposi-
tions - i.g. conjunctive connected clauses - leads to a
finite net model as its representation.
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not exisist2® . Thirdly only pure nets are considered??.
According to the generalized construction of net models
- each transition of an analyzed net is considered - to-
gether with its incident places for the involved atomar
propositions?® - as a clause. Therefore a net model re-—
presents a finte set of clauses that are connected in a
conjunctive manner and completely describe the logical

aspects of a problemn.

Under these assumptions the net theorem states that

the set of clauses is inconsisten? iff:

~ there exists a semi-positive T—invariant t such that
at least one firing sequence with t as firing vector

really reproduces the %ero—marking of the net and

— the subnet which represents the forementioned T-in-
variant does not contain any non-trivial P-invari-

ant29.

If a contradiction in the set of clauses has been iden-
tified it cannot be resolved by changing the actual
problem situation, because no concrete marking of the
net model is object of the net theorem. Therefore the
contradiction indicates a structural inconsistency in
the propositional description of logical ©problem
aspects. It 1is impossible to construct any marking of
the net model that would remove the contradiction.
Hence there cannot exist any consistent problem situa-

tion represented by a net marking.

26 This aspect will be discussed at the end of this
chapter.

27 TImpure nets can be augmented to pure nets by refin-
ing the transitions which are involved in 1l-loops. Each
such transition is replaced ba a sequence of two tran-
sitions which enclose an additional place; see Lauten-
bach (1987). '

28 The mentioning of the incident places is omitted in
the following if no misunderstandings are to be expec—
ted.

29 If such a subnet exists it is caused by a vicious
circle that occurs during the reproducing of the zero-
marking by that firing sequence which has the analyzed
T-invariant t as firing vector; see Fidelak (1986b).
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In addition the source of a detected structural
inconsistency can be identified. The contradiction is
caused by that subset of clauses being represented in
the net model by transitions which correspond with
positive components in the T—invariantrg fulfilling the
net theorem. It is impossibie to assign any combination
of truth values to the atomar propositions, which are
the constituents of the clauses, in such a manner that
the conjunction of all c¢lauses becomes true. Therefore
the complex proposition in conjunctive normal form
which is repfesented by the whoie net model must be
false in any case. This meta-proposition is equivalent
with the recognition that.the modelled problem descrip~
tion contains a structural inconsistency caused by the

set of clauses defined above.

For the purpose of identifying T-invariants with the
special properties mentioned above it is necessary to
generate all T-invariants of a given net model and to
evaluate those invariants whether they fulfil the con-
ditions of the net theorem. The second step of evalu-
ating generated T-invariants involves an additional in-
variant analysis, namely the generation - and evalu-
ation - of P~-invariants of the representing subnets.
The task of generating T- or P-invariants causes the

main difficulties in applying the net theoremn.

T- and P-invariants are integer solutions of the
linear-homogenous equation systems C-t=0 and ptr-C=0tr,
respectively. The problem to generate solutions of such
diophantic equation systems can be solved in principle
by means of linear algebra. This reveals once again the
potential of net theory to combine a compact and trans-—.
parent graphical problem description with the applica-

bility of powerful algebraic techniques. These tech-
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niques allow to analyze logical description properties

on the base of consistency®0.

The generation of net invariants is supported by a
wide range of software tools for Petri net analysis
based on algebraic techniques; see the tool-overview in
Feldbrugge (1987). But these programs do usually not
gﬁarantee to generate all theoretically existent invar-
jants. Therefore the contribution of Pascoletti (1985)
deserves special attention. It is based on sophistica-
ted algebraic anlaysis and enables to identify all
"simple" T- and P-invariants of ﬂets. These invariants
are "simple" in the sense that each theoretically
existent invariant can be build up by linear combina-
tion of simple invariants. Hence the theoretical prob-
lem of generating all invariants of a net - and conse-
quently the detection of all contradictions in net-
based descriptions of logical pfoblem aspects, too - is
solved in principlé. The two distinct algebraic algo-
rithms developed by Pascoletti can be augmented by com-
binatorial algorithms to generate and evaluate all
invariants of a net model as far as it is necessary for
applying the forementioned net theorem. Therefore the
analytical requirement of chapter 1 concerning the pos-

sibility of computerized model analysis is fulfilled.

However, it remains the practical problem that the
bulding up of all invariants and their evaluation may
combinatorically explode. Although the automatical exe-
cution of generating and evaluating invariants can
diminish the practical importance of combinatorial ex-

plosion, this difficulty remains in principle. This

30 Another fundamental aspect of net theory concerns
the combination of linear algebraic techniques applied
to net models on the one side with the artificial
intelligence technique of proving theorems based on the
refutation principle on the other side. This connection
between linear algebra and artificial intelligence is
constituted by the prove of Lautenbach's net theoren
which grounds on the refutation “principle. But this
bridging to artificial dintelligence lies beyond the
scope of this article; see Lautenbach (1985), Fidelak
(1986a), Zelewski (1986).
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holds at least for such nets in which the number of
invariants considerably exceeds the number of simple
invariants. But at this time the proportion between
these both numbers of invariants 1is not yet well
explored, so that judges about the practical importance
of combinatorial explosion are problematic in the con-

text of the net theoremn.

The abstraction from finite tokeﬁ capacities in Lau-
tenbach's net theorem causes a serious drawback of in-
variant analysis. Nets with unbounded token capacities
for their places may allow some firing sequences which
are inadmissible in complemantary nets with same struc-—
tures but finite token capacities. Such a deviation of
possible net behaviors plays a role for net analysis of
logical problem descriptions, because nets with token
capacity K{(pj)=1 for all places p;eP are required (see
chapter 2.1).

There are constructions that allow to transform nets
with finite token capacities into nets with unbounded
token capacities with the help of additional comple-
mentary places®!., But these complementary places ad-
versely affect the transparency and compactness of net
models. Furthermore it 1is assumed that the sum of
tokens on a place with finite token capacity and its
complementary place must equal to the token capacity
under each reachable marking. This assumption contra-
dicts the zero-marking of the invariant analysis in the
special form of the net theorem. Therefore a contradic-
tion or the consistency of a net model which have been
"proved" with the he’» of the net theorem must be
critically analyzed whether the "prove" rests either on

the structure of the logical problem description or on

31 See e.g. Lautenbach {(1987).
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the abstraction from finite token capacities®2. The
expression "prove" is used in this restricted sense in-

the following.

For the remaining discussions of this chapter it is
supposed that a net model of logical problem aspects is
proved to be structurally consistent. Then the original
nét model can be augmented in a manner that enables to
jdentify all possible situative inconsistencies. These
contradictions depend on meta-propositions about the
truth wvalues of those atomar '(object—)propositidns
which constitute the modelled problem description. For
this purpose an atomar proposition is appended as an
atomar clause (literal) -to the original problem de-
scription iff it is contained in at least one composite
proposition of the problem description but dJdoes not
form an atomar clause of the description's conjunctive
normal form. According to this the negation of each
atomar proposition‘out of the original problem descrip-
tion is appended as an atomar clause (literal) iff this
negation is not yet an atpmar clause of the descrip-

tion.

The resulting augmented net must be inconsistent
since it includes conjunctions of atomar propositions
and their negations. The T-invariants are neglected
which fulfil the net theorem and are caused by those
sets of clauses that consist of a atomar proposition
and its negation. Then the remaining T-invariants which
also satisfy the conditions of the net theorem mnmust
indicate all possible situative inconsistencies caused

by assigment of truth values to the atomar proposi-

32 This anlayse can be carried out by studying the
firing sequences which both agree with the firing vec-
tor of the T-invariant and reproduce the zero-marking.
Iff such a firing sequence exceeds at least once the
token capacity K(pj)=1 of any place p; then the detec-
ted contradiction is not necessarily caused by the
problem description but may be effected by the abstrac-
tion from token capacities.
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tions3%. This is implied by the premise that the origi-
nal net model was proven‘to be structurally consistent.
Because of this premise any detected new "structufal"
inconsistency in the augmented net model must be caused
by the subset of those transitions which both corres-
pond to positive éomponents in one of the forementioned
remaining T-invariants and represent appended (nega-
tions of) atomar propositions. Only these atomar propo-
sitions are considered in the following. They gain the
truth values "true" or "false"” iff they are appended to
the original problem description as atomar propositions
or as negations of atomar propositions, respectively.
It can be shown that this cohbination of truth values
forms a meta—proposition about an inconsistent problem
situation®4, di.e. an inconsistent marking of the net
model which could be detected with the help of fact-
nets, too. Hence the set of all remaining T-invariants
allows to determine all net markings which représent
inconsistent descriptions of problem aspects that are

marking—dependent, that is situative.

This way of identifyving all possible inconsistent

problem situations in a net model that is proved to be

33 If there - - exist no remaining T-invariants the net
model represents a tautology which is true with respect
to all possible problem situations. This special case
is ruled out in the following, because empirically
meaningful probklem descriptions are not tautological.

34 The underlying idea is the following: The conjunc-
tion of the clauses which are implied by each remaining
T-invariant is a logical contradiction, i.e. it must be
false under every possible combination of truth values
for the atomar propositions of its c¢lauses. Since the
original net model is structurally consistent, the
contradiction must be caused by the appended atomar
propositions and negations of atomar propositions.
There is exact one combination under which the conjunc-
tion of these appended literals would be true. It is
that combination which assigns the truth value "true"
to each literal. Therefore appended atomar propositions
are true and appended negations of atomar propositions
are false with respect to this assignment. But the
truth of the conjunction of appended literals contra-
dicts the proved inconsistency of the augmentioned net
model. Hence this combination of truth values cannot be
consistent with the c¢lauses of the original net model
which was proved to be structurally consistent.
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structurally consistent can be used to describe the ab-
stract space of logically consistent problem solutions
in a net-based, but algebraic formulated manner. It is
possible to combine this algebraic defined logical view
of solution space with a conventional algebraic OR-
model which represents the non-logical aspects of a
problem description. The resulting composed algebraic
model may be solved by conventional OR-techniques.
However, this approach is not‘considered in more de-
tail3® since the solution of models does not concern
the scope of this article which is concentrated on the
construction of models. Furthermore the question had to
be answered whether the net—-based approach of modelling
logical problem aspects leads to easier solvable models

than the conventional use of logic variables36.

4 Examples for Net-Based Analysis of Liogical Problem
Descriptions
4.1 Some Simple Theoretical Examples for Demonstrating

Structural and Situative Inconsistencies

L 4

The following examples only serve to illustrate the
theoretical concepts of situative and structural analy-
sis concerning propositional descriptions of logical
problem aspects. They are reduced to very simple nets
without any reference to real problems in order to elu-—
cidate the potential of possible findings. In accord-
ance to the elementary net structure the modelled logi~-
cal aspects are tr1v1al° in chapter 4.2 an example will

be discussed whlch is a little b1t more substantial.

The following nets represent composed propositions
which are expressed in conjunctive normal form, i.e. as
conjunctions of clauses. Each clause Ci is represented

by a transition ti with its incident places. Each of

35 Tt is exhaustively outlined in Zelewski (1986).

36 A remark to this aspect is containd. in Zelewski
(1986).
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these places p; is characteristic for an atomar propo-
sition P; constituting the clause Ci. The markings
M(pj)=1 and M(p;)=0 of a place p; indicate that the
corresponding proposition Py is true or false,
respectively. The truth value of the clause follows
from the markings of its incident places, i.e. erm the
truth values of its constituting atomar propositions.
According to the work of Pascoletti only the simple T-
invariants are considered, but ‘not the T-invariants

which are linear combinations of simple T-invariants.

. Fig. 2 shows the simplest structural inconsistency
which is logically possible. The composed proposition
P; A(-P:) that simultaneously states an atomar proposi-
tion P: and its negation =P: must be false under any
possible assignment of truth values to its atomar prop-

_osition P:. Correspondingly the T-invariant ke fulfils
the forementioned conditions of the net theorem. This
invariant is the firing wvector of the firing sequence
<ti ,t2> which reproduces the zero-marking. The compo-
nents ci=1 and cz=1 of the invariant t. indicate that

the set {Ci,C2} of clauses is structurally inconsist-

ent.

. .
Cz=|1 -1} te= 1! t4 .. ; I tl
Co - £2=0=0

Fig. 2: proposition Pi A(-P1)<=>CiAC:
with Ci1 <=>P1i, C24¢=>-P1

The net model of fi_. 3 is structural consistent since
there exist no semi-positive T-invariants reproducing
the zero-marking. But the sifuative problem description
which assigns the truth values "true" and "false" to
the atomar propositions P: and Pz, respectively, is
inconsistent. The correspondingly marked net with
M(p1)=1 and M(pz)=0 contains the activated transition

t: which contradicts the requirement of dead transi-

tions in fact-nets. Since the crucial transition ti
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represents the composed clause Ci1<=>P:1->Pz it follows
that the supposed assignment of truth wvalues to the

atomar propositions is not consistent with the subjunc-

T

tion of clause Ci.

-110
Cs={ 1 0 1

1 () ®)
ts=] 1! and others 1:4

..1 :

Ca- ts3=0, but: ts
is not semi—-positive t3

Fig. 3: proposition (P1—>Pz)APiAP2<=>Ci1ACz2ACs

with C1<=>(aP1)yPz, C2<=>P1, C3<=>P:z
Fig. 4 differs from fig. 3 only with regard to the
clause C3<=>-Pz which is replaced for Cs<=>Pz. This
little change causes an important logical consequence.
The net of fig. 4 models a structurally inconsistent
problem description. The T-invariant ts« satisfies the
requirements of the net theorem. It is the firing vec-—
tor of the firing sequence <tz ,t:,.ts> which reproduces
the zero-marking. Hence it cannot exist any problem
situation represented by a net marking which is logi-
caily consistent. This result is evident, since the

modelled proposition contradicts the wellknown infer-

ts

ence rule of modus ponens.

-11 0
Ca=| 10 -1

,. "t,, @

1
ta=|1

1
Ca-La=0

ts

Fig. 4: proposition (Pi—>Pz )AP1iA(=P2)<=>C1ACzACs
with Ci <=>(=P1)VPz, C2<=>P1, Cz<=>-P:2
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The findings of fig. 3 and fig. 4 are integrated in
fig. 5 which is the augmention of the composed clause
Ci1 <=>P1->P2 with respect to its atomar propositions and
their negations. Thée net of fig. 5 possesses the tri-
vial structural inconsistencies between each atomar
proposition and its negation correspondingly to fig. 1.
They are representea by the T-invariants ts5.31 and fs.2.
But there remains a third T-invariant &s.s, which is
not trivial. Its structural inconsistency is caused by
the set {Ci ,Cz2,.Cs} of clauses in accordance to its com-—
ponents with positive wvalues. It shows that the truth
of clauses Cz and Cs — i.e. atomar propositions P: and
P2 are true and false, respectively, - cannot be con-
sistent with the truth of the subjunction of clause Ci.
This is exact the forementioned case of situative
inconsistency in fig. 3 and of structural inconsistency
in fig. 4. Since the net of fig. 5 contains no more
remaining T-invariants 1t can be concluded that the
inconsistency detected by invariant ts.s is the only
non—trivial inconsistency which may occur in’relation
to the subjunction of clause Ci <(=>P1~->P2. Whether this
inconsistency 1is recognized as being situative or
structural depends on the structure of the proposi-
tional problgm description. The structure underlying
the net of fig. 3 led to a situative, the structure
belonging to the nets of fig. 4 and 5 to a structural

inconsistency.
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Fig. 5: proposition (P:i—P2 JAP:1 A{~P1 )APz A{=P2)<=>...
CiAC2ACaAC4ACs with Ci<=>{(-P1)VPz, Cz2<=>P;,
Ca{=>-P1, Ca<=>P2, Cs5<=>=P2
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The net of fig. 6 is structural consistent. It contains
a semi-positive T-invariant ts which defines the firing
vector of the firing seguences <ti,tz> and <tz.,.ti>.
However, these firing sequences are not able to repro-
duce the zero-marking since neither transition ti nor
transition tz is activated under this marking3®?. Hence
the net theorem is not fulfilled. But the modelling of
a situative problem descriptiqn in which the atomar
propositions P:1: and Pz are false (true) and true
(false), respectively, is inconsistent. Under the cor-
responding marking M with M(p:1)=0 and M{pz)=1 (M(p1)}=1
and M(pz2)=0) the transition tz {(t:) is activated. This

contradicts the requirement of dedad transtions in

€4
define the firing vector

of a zero-marking repro-

ducing firing sequence _t
‘ p]

fact—-nets.

1 -1

-1 ll

Ce=

Ce- te=0, but: tes does not

Fig. 6: proposition (Pi—>Pz2)A(Pz2—>P1)<=>CiAC:2
with Ci<=>(-P1)VPz, Cz2<=>(=P2)VP:

The net of fig. 7 1is structural consistent; its com-
bosed proposition is logically equivalent to the dis-
Junction of the atomar propositions P1 and Pz. It con-
tains a semi—positive T-invariant tv which defines the
firing vector of the firing sequence <tz,t:> which
reproduces the zero-marking?®®. However this invariant
does not fulfil the second condition of the net theo-
rem. The "subnet" of the graphical representation of

the invariant tv is identical with the whole net. This

37 The same holds for all other - infinetely many -
semi-positive T-invariants te.x!r=(k,k) with k=2,3,...,
which are degenerated linear "combinations" of the sim-
ple T—-invariant ite¢. Furthermore there exist also infi-
netely many T-invariants which are not semi-positive,
e.g. ke tr=(-1,-1).

38 Once again there exist infinitely many not-simple
semi-positive T-invariants tv.xtr=(k,k) with k=2,3,...
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"subnet" contains two non-trivial P-invariants prz.: and

p7.2 both contradicting the net theorem??.

13

Cr=1-11

H

tr=j1] {:
1

Cs7-t+=0, but: there

exist non-trivial

P-invariants with: @ @

_1!

| t,

pr.1tr-Cr=pr.2tr-Cy=0t"

Fig. 7: proposition (Pi—> (=P2))A(P1VP2)<=>CiAC2
with Ci1<=>{(-P1)V(aPz2), Cz2<=>P1V P2

4.2 An Application—-Oriented Example Based on Modelling

the Design of Balance Sheets

Johanntgen-Holthoff (1986) proposed a complex decision
model concerning the practice of balance sheet make~up.
The model isv constructed as an mixed-integer 1linear
program with Ehe help of conventional OR-techniques. In
the following only a part of this voluminous model is
discussed. This part models the logical aspects which
must be considered in order to design the taxable base
of corporate income tax with regard to loss carryback
and carryforwardt®. The logical aspects are expressed
by binary logic variables. Since this (partial) model
remains to be very complex - it fills up 24 pages by

Johidnntgen-Holthoff (1986) - in the following only non-

39 Infinetely many not-simple not-trivial P-~invariants
can be derived from this two simple non-trivial P-
invariants, e.g. pr.atr=(2,-2).

40 The design of balance sheets bases on German corpo-
" ration income tax law (KStG), corporation income tax
regulations (KStR) and income tax lagw (EStG), namely
§ 8/4 XStG and § 37/2 KStR in connection with § 104
EStG.

L3
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negative taxable bases without complications caused by

loss carrybacks or carryvforwards are considered.

The conventional, voluminous and intransparent model
of Johadnntgen-Holthoff ~ which is referenced as forigif
nal model" ~- 1is reformulated as a compact net model.
The naming, indexing and numbering of the wvariables and
formulas are adopted from the original model in order
to support comparisons between. the modelling alterna-

~tivesdl,

The original model involves 16 atomar propositions
P; with j=1,...,9,11,...1742 relating to a reference
year indexed by "t". They are listed in the following:
P1 : "There is no loss Vi,s/- with relevance to corporate
income tax: Vi,;-=0."

Pz : "The profit Gt with relevance to corporate income
tax equals the taxable base Gt,o before consider-
ing loss carryback or carryforward: Gt=Gt, o ."

Pz : "There is no loss carryback Xt,s,-2z from two years
ago: Xt/-2=0."
Psa : "There is no loss carryback Xt/-1 from the pre-

vious year: Xt /-1=0."

Ps : "The profit Gi,s after deduction of the cumulated
loss carrybacks of the previous years equals the
difference between the profit Gt:+ and the non—-nega-
tive loss carryforwards Z: of the previous years:
Gt/B=Gt—?t."

Ps : "In the next yvear no loss carrvforward is showed:
Zt+1=0."

Pz : "§ 104 sentence 1 EStG is applied for determing
taxable base Et of corporate income tax:
Et=Gt/p~Xt+2/-2=-Xt+1/-2."

g
©

"The amount Gt,r limiting the loss carryback
pursuant to § 8/4 KStG equals zero: Git,=0."

Ps : "The amount Gt/ limiting the loss carryback pur-
suant to § 8/4 KStG equals the difference between
the profit Git,e after deduction of the cumulated
loss carrybacks of the previous years and the
gross distribution of dividends Xa,t/b:
Gt/e=Gt/B—Xa,t/b."

Pi1: "The taxable base Ei of corporate income tax pur-
suant to § 104 sentence 1 EStG eguals zero: Et1=0."

41 For a more detailed explanation of the following
-formulas see Zelewski, (1986).

42 The proposition Pie of the original model is omit-
ted here since it is the same as proposition Pe.
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Pi2: "The loss carryforward Zi+:1 of the previous years
which is reduced by the profit Gt is not corrected
for the next year: Zt+1=2t-Gt."

Pis “The loss carrvforward Zi:+1 of the previous years
which is reduced by the profit Gt is corrected for
the next year by loss carryforwards which are no
more deductable:

Zt+1=%t -Gt —{Zt-4—-Gt ~Gt-1-Gt-2-Gt-3—-Gt-4)."

Pia

(X3

"The taxable base Gi,;o of corporate income tax be-
fore considering loss carrybacks or carryforwards
is not negative: Gi,so020." .

Pi5: "The profit Gt with relevance to corporate income
tax is not less than the cumulated loss carryfor-
ward Z:+ of the previous vyears: Gt2Z2¢."

Pis: "The profit Gt,s after deduction of the cumulated
loss carrybacks of the previous years does not
cover the gross distribution of dividends Xa,t/bv:
Gt/B<Xa,t/p."

Pi7: “The loss carryforward Zi-4 of year t—4 has been
compensated by profits up to the reference year t:
Zt-45Gt+Gt-1+Gt-2+Gt -3 +Gt -4 . "

With the help of these atomar propositions the logigal
requirements which must be fulfilled by any 1legally
admissible design of balance sheets are stated as 8
composed propositions P; with j=18,...,25%3% which are
supposed to be conjunctively connected. These proposi-
tions are composed as subjunctions so that they appear
in the wellknown form of "decision" rules. In order to
transform this propositional description of 1logical
problem aspects into an equivalent net model each sub-
junction 4is reformulated in conjunctive normal form
with the help of clauses Ci (i=1,...,13):

Pig: Pia — (PiAP2AP3APs) <=> Ci1AC2ACsAC4

with: Ci1 <=> (-P14)}VP:
Cz <=> (~P14)VP:z
Cz <=> (-P14)VPs
Ca <=> (-P14)VP4

Pig: Pis —> (PsAPe) <=> CsACs

with: Cs <=> (-Pis)VPs
Ce <=> (=P1s}VPs

P2o: (P14AP1s) —> Pz <=> C¢
with: C+ <=> (-P14)V{(-P1s)VP7

43 This indexing cannot be found by Johidnntgen—-Holt-
hoff, because the formulas used there do not follow the
strict propositional approach of this article.
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P21t (P14AP1s5sAP1s)} —> Psg <=> Cs

with: Cs <=> (=P14)V(~Pis)V(~P1s)VPe
Pzz: (P14APis5A(=P1s)) —> Ps <=> Co

with: Co <=> (-P14)V(=P15)VPsVPis
Pzs: (P1aA(=Pis)) —> (PgAP11) <=> Ci0ACi1

with: Cio <=> (-aP14)VPsVP1s
Ci1 <=> (-P14)VP11VPis

Pza: (P1aA{-P15)AP17) —> P12z <=> Ciz2
with: Ciz <=> (-P14)V(-P17)VP12VP1s
(P14 A(=P15)A(=P17)) —> Pisz <=> Cisa
with: Cia <=> (=P14)VP13VP15VPiv

Pzs

(X3

The net model of Fig. 8 represents the logical problem
description given by the subjunctions Pis,....,Pzs. Each
place p3j of the net represents an atomar proposition Pj
with the same index which is a component of the fore-
mentioned subjunctions. Each transition ti of the net.
represents a clause Ci with the same index which is a
component of the conjunctive normal forms of the sub-
junctions. The whole net model represents a conjunction

of all these clauses.

The net model of fig. 8 contains no T-invariant
which fulfils the net theorem. Therefore the logical
problem description is structurally consistent. But
there are several inconsistent problem situations de-

fined by assignments of truth values to the atomar
.propositions P1,..,P17. For example all problem situa-
tions are inconsisﬁent which suppose that the proposi-
tions P14, P15 and Pis¢ are true and the proposition Ps
is false. The inconsistency of such meta-propositions
is not at all obvious as it can be seen by comparing
them with the above listed definitions of the involved

propositions.

This inconsistencies c¢an be proved by apblying the
fact-net based approach. The supposed assignments of
truth +values are represented by markings M with
M(p14)=M(p15)=M(p1s )=1 and M(ps)=0. Under such markings

the transition te 1s activated. This contradicts the
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Fig. 8: net model of the description of logical aspects
concerning the problem of balance sheet make-up
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requirement of dead transitions in fact-nets. Therefore
the markings M must represent inconsistent descriptions

of problem situations.

Tﬂe inconsistency to suppose that the proppsitions
P14, P15 and Pis are true and the proposition Ps is
false can be proved by the apprcocach of net augmen-—
tioning, too. Fig. 9 represents the augmented net model

which is derived from the original problem description

- modelled by the net of fig. 8 - by appending the
underlying atomar propositions Pi,...,Pi7 and their
negations as atomar c¢lauses Ci4,...,Css,. which are
represented by the transitions ti4,...,tas and their

incident places. Fig. 10 shows the incidence matrix Cs

of the augmentioned net model.

For the augmentioned net holds - among others — the
T-invariant %ts which satisfies all conditions of the

net theorem. This invariant is defined by:
tetr = (cx]|cx=1 for x=8,29,38,40,42 and cx=0 otherwise)

The invariant fulfils the equality Ce-te=0 and is the
firing vector of severai firing sequences each of which
reproduces the zero-marking. For ekample,
<tzsg,tao ,taz,ts,t2e> 1is such a firing seguence. There-
fore the set {Css ,Cqa0,Ca2,Cs,C29} of clauses represents
(a part of) a  structurally inconsistent ©problem
description. This implies - as explained in chapter 3.2
- that the truth of the atomar clauses Cze, Czs, Cao
and Ca2 cannot be consistent with the composed clause
Cs . The forementioned atomar clauses are equivalent to
the propositions -Ps, Pia, Pi1s and Pie, respectively.
Because the supposed truth of the atomar clauses is in-
consistent, it must be inconsistent to suppose that the
propositions Pisa, P15 and Pis are true and the proposi-
tion Ps is false. This is Just the inconsistency detec-

ted above by the fact-net based approach.
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5 Conclusion

The net-based modelling of logical problem aspects has
two main advantages. Firstly the graphical representa-
tion of net models makes it easier to communicate about
such logical aspects. Secondly the logical analysis can
be reduced to algebraic analysis ‘which allows the
application of powerful analytic algorithms and their
implementations in computer software. Net theory con-
stitu%es the pivotal point: it establishes a graphical,
well understandable and communicable representation on
the one side and possesses a sophisticated mathematical
theory with strong connections to linear algebra on the
other side. Real problems can be analyzed on the base
of proving (in)consistencies in the same manner as it
has been discussed 1in chapter 4 with regard to some

illustrative examples.



45

References

Azema P, Juanole G, Sanchis E, Montbernard M (1984)
Specification .and Verification of Distributed Sys-
tems Using Prolog Interpreted Petri Nets. Proceed-
ings of the IEEE Software Engineering Conference
1984. New York, pp 510-518

Bitz M {1977) Die Strukturierung dkonomischer Entschei-
dungsmodelle. Wiesbaden

Bonczek R, Holsapple C, Whinston A (1981) A Generalized
Decision Support System Using Predicate Calculus and
Network Data Base Management. Operations Research
29:263-281

Boos J (1986) Lokalisierung von MeBstellen fir ein In-
formations-System zur Energiebewirtschaftung in in-
dustriellen Betrieben — Entwicklung eines OR-Modells
mit einem Losungsvorschlag. Working Paper No. 4, In-—
dustriesenminar, Universitat Koéln

Bullers W, Nof S, Whinston A (1980) Artificial In-
telligence in Manufacturing Planning and Control.
ATIE Transactions 12:351-363

Chang C, Lee R (1973) Symbolic Logic and Mechanical
Theorem Proving. New York London

Ellinger T (1985) Operations Research - Eine Einfih-
rung. 2nd edition, Berlin Heidelberg New York Tokyo

Esser H, Klenovits K, Zehnpfennig H (1977) Wissen-
schaftstheorie 1: Grundlagen und Analytische Wissen-
schaftstheorie. Stuttgart ’

Feldbrugge F (1987) Petri Net Tool Overview 1986. In:
Brauer W, Reisig W, Rozenberg G (eds) Petri Nets:
Central Models and Their Properties. Advances in Pe-
tri Nets, Part I, Proceedings of an Advanced Course,
8.-19.09.1986 in Bad Honnef, Lecture Notes in Com-
puter Science 255, Berlin Heidelberg New York Tokyo,
pp 20-61

Fidelak M (1986a) Wissensdaistellung und 4verarbeitﬁng
auf der Basis von Petri-Netzen. Diplomarbeit, Fach-
bereich Informatik, Universitdt Bonn

Fidelak M (1986b) Petri—-Netze -~ Eine formale Sprache
zur Wissensreprasentation. Rundbrief des Fachaus-
schusses 1.2 Kinstliche Intelligenz & Mustererken-
nung in der Gesellschaft fir Informatik, No. 43, pp
32-38

Forrest J, Hirst J, Tomlin J (1974) Practical Solution
of Large Mixed Integer Programming Problems with
UMPIRE. Management Science 20:736-773

Gabriel R (1982) Optimierungsmodelle bei logischen
Verknipfungen - Modellaufbau und Modelldsung von
Mixed-Integer-Problemen bel gualitativen Anforderun-—
gen. Miinchen



Giordana A, Saitta L (1985) Modeling Production Rules
by Means of Predicate Transition Networks. Informa-
tion Sciences 35:1-41

Jantzen M, Valk R (1980): Formal Properties of Place/
Transition Nets. In: Brauer W (ed) Net Theory and
Applications. Proceedings of the Advanced Course on
General Net Theory of Processes and Systems, 8.-
19.10. 1979 in Hamburg, Lecture Notes in Computer
S..ence 84, Berlin Heidelberg New York, pp 165-212

Johénntgen—-Holthoff M {1986) Entscheidungsmodell der
JahresabschlufBgestaltung £lir Publikumsaktiengesell-
schaften. Dissertation 1985, Universitdt Koéln, Wit-
terschlick/Bonn

Rern W {(1987) Operations Research -~ Einfihrung und
Uberblick. 6th edition, Stuttgart

Lautenbach K, Pagnoni A (1984) On the Various High-
Level Petri Nets and their Invariants. Newsletter of
the Special Interest Group "Petri Nets and Related
System Models" 16:20-36

Lautenbach K (1985) On Logical and Linear Dependencies.
Working Paper No. 147, Gesellschaft f4r Mathematik
und Datenverarbeitung mbH/Bonn, Sankt Augustin

Lautenbach K (1987) Linear Algebraic Techniques for
Place/Transition Nets. In: Brauer W, Reisig W, Ro-
zenberg G (eds) Petri Nets: Central Models and Their
Properties. Advances in Petri Nets, Part I, Proceed-
ings of an Advanced Course, 8.-19.09.1986 in Bad
Honnef, Lecture Notes in Computer Science 254, Ber-
lin Heidelberg New York Tokyo, pp 142-167

Laux H (1982) Entscheidungstheorie — Grundlagen. Berlin
Heidelberg New York

Mainz U (1984) Netztheoretische Représentation pradika-
tenlogischer Begriffe und Methoden. Diplomarbeit,
Institut flir Informatik, Universitiat Bonn

Miller—-Merbach H (1984) The Future of Operational Re-
search — Under the Light of the 5th Generation Com-
puters. Paper presented at the Annual Conference of
APDIO, 1984 in Portugal, Kaiserslautern

Neumann K (1987) Operations-Research-Expertensysteme -
Wissenstransfer fiir die klein- und mittelsté&ndische
Industrie. In: Henn R {ed) Technologie, Wachstum und
Beschaftigung. Festschrift fir Lothar Spath, Berlin
Heidelberg New York London Paris Tokyo, pp 264-273

Pascoletti K (1985) Diophantische Systeme und Lésungs-
methoden zur Bestimmung aller Invarianten in Petri-
Netzen. Dissertation, Universitat Bonn

Reisig W (1985) Petri Nets - An Introduction. EATCS
Monographs on Theoretical Computer Science 4, Berlin
Heidelberg New York Tokyo



47

Reisig W (1987) Place/Transition Systems -~ Fundamen-
tals. In: Brauer W, Reisig W, Rozenberg G (eds) Pe-
tri Nets: Central Models and Their Properties. Ad-
vances in Petri Nets, Part I, Proceedings of an Ad-
vanced Course, 8.-19.09.1986 in Bad Honnef, Lecture
Notes in Computer Science 254, Berlin Heidelberg New
York Tokyo, pp 1l1l6-141

Stegmiiller W (1983) Probleme und Resultate der Wissen-
schaftstheorie und Analytischen Philosophie, Vol. I:
Erklarung - Begriindung - Kausalitadt. 2nd edition,
Berlin Heidelberg New York

Thieler—-Mevissen G (1975) Vollstandigkeit und Korrekt-
heit des netztheoretischen Kalkils fir die Aussagen-—
logik. Internal Report 04/75-5-9, Gesellschaft fur
Mathematik und Datenveéerarbeitung mbH/Bonn, Sankt Au-
gustin

Thieler—Mevissen G (1977) The Petri Net Calculus of
Predicate Logic. Internal Report ISF-76-09, Institut
fir Systemforschung, Gesellschaft fir Mathematik und
Datenverarbeitung mbH/Bonn, Sankt Augustin

Thornton P (1985) Expert Systems - The Challenge for
OR. In: Ohse D, Esprester A, Kipper H, Stahly P,
Steckhan H (eds) Operations Research Proceedings
1984. DGOR -~ Vortrage der 13. Jahrestagung, 12.-
14.09.1984 in Sankt Gallen, Berlin Heidelberg
New York Tokvo, pp 277-284

Westphal H (1986) Eine Beurteilung paralleler Modelle
. flir Prolog. In: Hommel G, Schindler S (eds) GI - 16.
Jahrestagung I: Informatik—-Anwendungen - Trends und
Perspektiven, Proceedings, 6.-10.10.1986 in Berlin,
Informatik—Fachberichte 126, Berlin Heidelberg New
York London Paris Tokyo, pp 227-240

Williams P (1985) Model Building in Mathematical Pro-
gramming. 2nd edition, Chichester New York Brisbane
Toronto Singapore

Zelewski S (1986) Netztheoretische Ansitze zur Kon-
struktion und Auswertung von logisch fundierten Pro-—
blembeschreibungen. Working Paper No. 11, Industrie-
seminar, Universitdt Koln

Zisman M (1978) Use of Production Systems for Modeling
Asynchronous, Concurrent Processes. In: Waterman D,
Hayes-Roth F (eds) Pattern-Directed Inference Sys-
tems. Orlando San Diego ... Sydney Tokyo, pp 53-68



