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Summary

A unidirectional mutation-selection approach for the general job shop scheduling problem is

presented. The underlying algorithm uses threshold accepting as an iterative search technique

and incorporates a special non-monotonic threshold function (threshold waving). Search is

performed in the space of operation sequences and, for the purpose of evaluation, is combined

with a simple heuristic transforming operation sequences into schedules. Mutation of solution

candidates is based on a critical path analysis and, additionally, on a probabilistically employed

local hill-climbing operator. Effectiveness of the approach is demonstrated within a comparison

with some well-known heuristic and exact algorithms.

Remark: A slightly shortened and changed version of of this report has been submitted to the

Symposium über Operations Research, the 1995 Annual Conference of the DGOR, the

GMÖR, and the ÖGOR.
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1 Introduction

In the field of combinatorial optimization an increasing number of approaches introducing

some kind of stochastic search are recommended as alternatives to somewhat more conven-

tional approaches of mathematical programming. A common characteristic of many of these

approaches is the principle of generating new solution candidates (configurations) by per-

forming some (often stochastic) perturbations (mutations or modifications) of already available

ones. Another characteristic is that the selection of configurations permitted to remain in the

solution process does not only depend on the quality of the solution represented by the con-

sidered configuration, but also on external parameters.

The number of configurations involved in the solution process can serve as a separation crite-

rion for the proposed approaches: In multidirectional approaches like genetic algorithms (GA)

[e.g. 11] a multitude of configurations is managed in a population. Availability of several dif-

ferent configurations is an indispensable requirement for the recombination of new confi-

gurations from the building blocks of already available ones. Recombination is the predomi-

nating principle for generating configurations in genetic algorithms. Mutation serves for adding

new building blocks by implementing small stochastic perturbations in the available building

material.

In another class of more simply structured unidirectional approaches, e.g. simulated annealing

[e.g. 1] or derivates like threshold accepting [6, 7], only one configuration undergoes a process

of mutation. Thus, selection is reduced to a decision whether a new, modified configuration

will replace the old one.

Facing complex scheduling problems with approaches using recombination it is a major prob-

lem to find a suitable representation of schedules: By means of reducing the search space, the

desired structure should be capable of representing schedules effectively, i.e. maximizing the

ratio of the number of feasible schedules to the number of representable ones. Simultaneously,

in order to exploit the implicit parallelism of multidirectional approaches, the availability of a

suitable recombination operator working on the proposed structure is presupposed. Short-

comings of the ‘team-work’ of a representation structure and the corresponding recombination

operator frequently causes inefficiencies: A lot of time is spent either searching the space of

infeasible solutions, e.g. in case of binary representation, or recombining solutions without

gaining solution quality. As long as ‘efficient’ combinations of representation structures and

recombination operators are missed, unidirectional approaches seem to be more fruitful for the

development of fast algorithms for scheduling purposes - despite some discouraging experien-

ces made with the ‘logarithmically cooled’ simulated annealing. In the following, such a unidi-

rectional approach for job shop scheduling considering the objective of makespan minimization

is introduced.
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2 Threshold waving

2.1 The algorithm

A first version of the sketched algorithm [13] has been developed by means of a comparison

with a specific genetic algorithm [12]. The algorithm adopts components of the GA, avoiding

the originally used binary representation structure which only serves for applicability of the

standard recombination operator (crossover). The algorithm uses threshold accepting as a base

search strategy very similar to simulated annealing, deviating in particular in the acceptance of

new configurations: A modified configuration serves as a working basis for further search if its

solution quality is better than or not more than an actual threshold worse than that one of the

current configuration. Hence, in contrast to simulated annealing threshold accepting does

without probabilities of acceptance and the formulation of a cooling or annealing schedule - a

very critical task when applying simulated annealing [e.g. 1] - is replaced by a slightly more

simple instruction of a threshold decrease. Additionally, a monotonic and linear decreasing

threshold function is used and the threshold is decreased after a fixed number of trials

(modifications).

In the resulting threshold accepting algorithm for makespan minimization (TAMM) solution

candidates are coded as task or job sequences, entered e.g. in a matrix row by row for the in-

dividual machines. An initial solution is created by randomly generating such sequences. In

order to generate schedules, the task sequences serve as input for a simple heuristic schedule

builder together with the given machine sequences of the jobs and the given operation times.

The schedule builder tries to build up a schedule according to the proposed sequences. In cases

of mutually blocking sequences (i.e. it is not possible to schedule any operation on any

machine), a repair algorithm changes one of the sequences giving priority to an operation cur-

rently to be processed on the selected machine while shifting as few other operations as pos-

sible.

Significant improvements of the TAMM algorithm have been attained by implementing two

extensions: Firstly, the modification operator, generating neighbourhood solutions by

exchanging two randomly chosen elements in the operation sequence of a randomly chosen

machine, is restricted to successive operations lying on a critical path of the considered sche-

dule. Secondly, an operator is added performing local hill-climbing by modifying the task se-

quences in a randomly chosen order. Within this operator only modifications resulting in higher

solution qualities are accepted. Each sequence is modified as long as any improvement is

attained. Because each modification causes a rebuilding of the schedule and, in case of im-

proved quality, maybe even of the critical path, this local search operator is very expensive and

therefore should be used carefully.
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Some first tests of that improved version of TAMM concerned the shape of the threshold

function to be used within a given runtime limit, i.e. the combination of a threshold’s start

value and the number of trials permitted at each threshold level. The range of possible combi-

nations is limited by the given runtime which can be translated into an overall number of trials

permitted.

As a result of the considered tests, combinations of high threshold’s start values and low num-

bers of trials permitted at each threshold level clearly outperformes reverse combinations. Or,

alternatively spoken, compared to the ‘threshold schemes’ originally used in TAMM, the num-

ber of trials needed to satisfy a given solution quality’s level can be reduced using high thresh-

old’s start values and low number of trials permitted at each threshold level. Clearly, this result

expresses only a tendency without claiming general validity. Nevertheless, it led to a third ex-

tension of the TAMM algorithm, considering the use of the ‘released’ number of trials in a way

that the solution quality is further improved: The rule of a monotonic decreasing threshold is

replaced by a threshold waving down and up between an (initial high) upper level and zero

with a decreasing amplitude, i.e. an upper level decreasing from ‘wave to wave’. Thus, the new

algorithm is called threshold waving (TW). The TW algorithm for job shop scheduling is pre-

sented in Figure 1 (for the sake of simplicity it is supposed that the initial value of thresh-

old_upper_limit is positive).

2.2 Parametrization

In detail, TW can be controlled by adjusting the following parameters (not all explicitly listed in

Figure 1): The starting value (thresholdstart) of the threshold’s upper limit ( threshold_up-

per_limit) as well as the number of trials after which the threshold is reduced or raised (nor-

mal_wavefactor).

Sometimes it seems to be advantageous to stretch the search of regions of slow convergence,

i.e. of high solution quality levels and low threshold’s upper limits. Therefore, a parameter

max_wavefactor is introduced replacing the normal wavefactor when the threshold’s upper

limit falls below a value wavefactor_limit.

Considering the modification operator, the number of random operation exchanges performed

each time the operator is called is bounded by the value of max_modification_factor. An exact

(integer) value is, also randomly, chosen from the interval [1, max_modification_factor].

Finally, due to its high cost, the application of the local search procedure is doubly controlled:

Firstly, permanent local search (i.e. follwing each single modification) is permitted only after

reaching a threshold’s upper limit of local_search_limit. Secondly, a probability for the appli-

cation of local search is given by the value local_search_probability, independent from the

threshold or the threshold’s upper limit.
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THRESHOLD WAVING

initialize candidate, threshold_upper_limit, threshold ← threshold_upper_limit,

wavefactor, trials ← 0, temp_optimum ← candidate

compute makespan (candidate) within BUILD_SCHEDULE (candidate)

determine CRITICAL_PATH (candidate)

loop new_candidate ← MUTATION (candidate)

compute makespan (new_candidate) within BUILD_SCHEDULE (new_candidate)

determine CRITICAL_PATH (new_candidate)

randomly or deterministically perform LOCAL_SEARCH (new_candidate)

trials ← trials + 1

∆E ← makespan (candidate) - makespan (new_candidate)

if ∆E > 0 then temp_optimum ← new_candidate

if ∆E > (-1)⋅threshold then candidate ← new_candidate

if trials = wavefactor then

trials ← 0

if threshold = 0 then

threshold_upper_limit ← threshold_upper_limit - 1

if threshold_upper_limit = 0 then th_adder ← 0

else th_adder ← 1

elsif threshold = threshold_upper_limit then th_adder ← (-1)

threshold ← threshold + th_adder

until (threshold = 0) and (threshold_upper_limit = 0)

solution ← temp_optimum

Figure 1: Threshold waving algorithm

3 Computational results

Tests are performed by using two well-established data sets of Fisher and Thompson [9]: The

processing of 10 jobs on 10 machines (‘10x10-problem’) as well as of 20 jobs on 5 machines

(‘20x5-problem’). The optimum makespan values are 930 for 10x10-problem and 1165 for

20x5-problem, respectively. The parameter settings used for TW are listed below in Table 1.

The last row indicates the number of repetitions (runs) of TW with the respective parameter

setting.

The cited parameter were determined in a trial and error process trying to fit an arbitrarily fixed

mean runtime value of 30 seconds for the 10x10-problem. The attained settings resulted in a

mean runtime of about 45 seconds for the 20x5-problem and have then been adopted (again by

trial and error) to lead to solution qualities as good as possible within the given time frame.
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10x10-problem 20x5-problem

thresholdstart 95 105
normal_wavefactor 1 3
max_wavefactor 5 3
wavefactor_limit 3 0
max_modification_factor 2 2
local_search_limit 3 0
local_search_probability 0.2 0.02

runs 1,000 1,000

Tab. 1: Parametrization

Computational results are presented in Table 2 and refer to an implementation of TW written

in Pascal on a Pentium-based PC (90 MHz). The distributions of the solution qualities for both

problems are shown in Figure 2 and Figure 3. The values of the worst solutions obtained are

1034 for the 10x10-problem and 1282 for the 20x5-problem, respectively.

10x10-problem 20x5-problem

best found solution quality (makespan) 930 1165
mean solution quality (makespan) 973.93 1203.54
average deviation from optimum [%] 4.72 3.31
standard deviation 20.06 19.15
mean runtimetotal [sec] 30.14 45.18
mean runtimebest [sec] 18.14 36.44
shortest time for detecting optimum [sec] 2.80 38.94
mean initial solution quality 3339.37 3589.13
correlation (initial and best solution quality) ≈ 0.0004 ≈ - 0.0003

Tab. 2: Computational results
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Fig. 4: Convergence of TW for the 10x10-problem

Remarks: (1) Beside the waving threshold, a very steep threshold function is the most signifi-

cant characteristic of TW, appearing in only 1 to 3 trials per actual threshold using the cited

parametrization. (2) Note the very short time of 2.8 seconds for detecting the optimum value

of 930 for the ‘famous’ 10x10-problem. This value, even if supported by a stroke of luck, il-

lustrates the strength of the convergence properties of TW (see Figure 4). (3) It should also be

mentioned that the used schedule builder does not produce non-delayed or other active sche-

dules (just semi-active ones). Nevertheless, comparisons to the algorithm of Giffler and

Thompson [10], producing active schedules, revealed the superiority of the used algorithm,

indicated by a significantly better convergence [13]. (4) A test using the parameter settings of

the 20x5-problem for solving the 10x10-problem led to a mean solution quality of 966.81, a

standard deviation of 14.88, and a mean runtime of 40.03 seconds. Use of parameter settings

of the 10x10-problem for solving the 20x5-problem led to a mean solution quality of 1212.55,



The Threshold Waving Algorithm for Job Shop Scheduling - 7 -

a standard deviation of 24.70, and a mean runtime of 43.98 seconds. (5) Neglecting local

search, the runtime of TW is mainly determined by the number of trials working as a factor for

the runtime(s) of the algorithm(s) for building up schedules and critical paths. Let a be the nor-

mal_wavefactor, n the thresholdstart, b the max_wavefactor, and s the wavefactor_limit. The

number of trials is then given by: [a×(n2+1) + (b-a)×(s2+s+1)].

4 Comparison

Concluding, the presented results are compared to the results of some other authors using the

same ‘problem artefacts’ of Fisher and Thompson:

• the branch&bound algorithm of Barker and McMahon [3] (BM)

• the branch&bound algorithm of Carlier and Pinson [4] (CP)

• both shifting-bottleneck-procedures of Adams, Balas and Zawack [2] (SB1, SB2)

• two (hybrid) genetic algorithms of Dorndorf and Pesch [5] (DP1, DP2)

• the genetic algorithm of Fang, Ross and Corn [8] (FRC)

• the simulated annealing approach of Van Laarhoven, Aarts and Lenstra [14] (SA1,...,SA4)

• the TAMM algorithm [13] (TAMM)

Table 3 summarizes solutions qualities and runtimes obtained by the mentioned approaches, a

selected parametrization of TAMM from [13] and TW. Runtimes values are rounded off, if

necessary, and found optimum values as well as corresponding runtime values are marked by

bold types. Because of the close relation to TW, all four parametrizations proposed in [14] are

listed for the algorithm SA.

10x10-problem 20x5-problem

best / mean solution runtime [sec] best / mean solution runtime [sec]

BM 960 193 1303 132
CP 930 3305 1165 1234
SB1 1015 10 1290 3
SB2 930 851 1178 80
DP1 960 932 1249 1609
DP2 938 106 1178 95
FRC 949 < 1500 1189 < 1800
SA1 1028 / 1040 113 1325 / 1354 123
SA2 951 / 986 779 1184 / 1229 848
SA3 937 / 942 5945 1173 / 1187 6840
SA4 930 / 933 57772 1165 / 1173 62759
TAMM 930 / 1007 194 1165 / 1213 265

TW 930 / 974 30 1165 / 1203 45

Tab. 3: Comparison of solution qualities and runtimes
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Remark: It should be noted that, due to different computer systems serving as bases for imple-

mentations and tests of the different approaches, no direct comparability of the stated runtime

values is given. The following computer systems are indicated by the authors: BM: Cyber 171,

CP: PRIME 2655, SBx: VAX 780/11, DPx: DECstation 3100, FRC: SUN-4, SAx: VAX 785,

and TAMM: PC 80486 (66MHz).

5 Outlook

With regard to the practical applicability, the effectiveness of an approach is just a necessary,

not, however, a sufficient condition. A proof of adaptability and flexibility of TW by applying it

to different real-world problems should be the next step creating a versatile algorithm as a

useful tool for the development of operational systems. Due to the multitude of introduced

parameters, the parametrization of TW is a problem of its own, suffering from the combinato-

rial ‘explosion’ of possible parameter combinations. Thus, another requirement for further de-

velopments is the implementation of an automated parameter tuning, perhaps exploiting pos-

sibilities of self-adaptation.
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