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Summary

A unidirectional mutation-selectiompproach for thegeneral job shogcheduling problem is
presented. Thenderlying algorithmuses threshold accepting as an iterative search technique
and incorporates apecial non-monotonic threshold functiaihréshold waving Search is
performed in the space of operation sequences and, for the purpose of evaluetioibjnsd

with a simple heuristic transforming operation sequences into schedules. Mutation of solution
candidates is based on a critipathanalysisand,additionally, on a probabilistically employed
local hill-climbing operator. Effectiveness of the approach is demonstéttéd a comparison

with some well-known heuristic and exact algorithms.

Remark: A slightly shortened and changed version of of teisorthas been submitted to the
Symposium Uber Operations Researtie 1995Annual Conference othe DGOR, the
GMOR, and the OGOR.
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1 Introduction

In the field of combinatorial optimization an increasing numberapiproaches introducing
some kind ofstochastic search are recommended as alternatives to somewhat nvere con
tional approaches of mattmatical programming. A common characteristicnmdny ofthese
approaches is thprinciple of generating new solution candidates (configurationspeny
forming somegoften stochastic) perturbations (mutations or modifications) of alr@ealiable

ones. Another characteristic is that the selection of configurations permitted to remain in the
solution process doawt only depend on thguality of the solution represented by the con-
sidered configuration, but also on external parameters.

The number of configuratiorisvolved inthe solution process can serve as a separation crite-
rion for the proposed approachesnialtidirectionalapproaches like genetic algorithms (GA)
[e.g. 11] amultitude of configurations is managed ipapulation.Availability of severaldif-
ferent configurations is amdispensable requiremeifdr the recombination of new confi-
gurations fromthe building blocks of alreadyavailableones.Recombination igthe predomi-
nating principle for generating configurations in genetic algorithms. Mutation servegling ad
new building blocks by implementingmall stochastic perturbations in tlaailablebuilding
material.

In anotherclass of more simplgtructuredunidirectionalapproaches, e.gimulated annealing

[e.g. 1] or derivates like threshold accepting [6, 7], only one configuration undergoes a process
of mutation. Thus, selection is reduced tdexision whether a newnodified confguration

will replace the old one.

Facing complex scheduling problems wathproaches using recombination it is a majab-
lem to find asuitable representation of schedules:rBgans of reducinthe search space, the
desiredstructureshould be capable of representing schedetfestively, i.e. maximizing the
ratio of thenumber of feasible schedulestte number of representabémes.Simultaneously,
in order toexploit theimplicit parallelism of multidiectional approaches, tlaailability of a
suitable recombinatiomperatorworking on the proposed structure is presuppoSdubrt-
comings ofthe ‘team-work’ of a representation structarel the correspondirrgcombination
operatorfrequently causemefficiencies: Alot of time isspent either searchirthe space of
infeasiblesolutions, e.g. in case of binary representationfeaombining solutionsvithout
gaining solution quality. As long a%fficient combindions of representation structures and
recombinatioroperators arenissed, unidirectional approaches seem to be matkil for the
development of fast algorithnfisr schedulingourposes - despite some discouragingeearp-
ces made withhe ‘logarithmically cooled’ simulatecannealing. Irthe following, such aunidi-
rectional approach for job shggheduling considerindpe objective of makespaminimization

is introduced.
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2 Threshold waving
2.1 The algorithm

A first version ofthe sketchedlgorithm[13] has been developed by means of a comparison
with a specific genetic algorithfd2]. Thealgorithm aopts components of the GAyoiding

the originally used binary representation structuvkich only serves forapplicability of the
standard recombination agor (crossover)The algorithm uses threshold accepting as a base
search strategyery similar to simulated annealing, deviatingoarticular in the acceptance of
new configurations: A modified configuration serves as a working fisisrther search if its
solution quality is better than oot more than an actual threshold worse than that one of the
current configuration. Hence, ioontrast to simulated annealing threshold acceptiogs
without probabilities of acceptance atite formulation of a cooling or annealing schedule - a
very criticaltaskwhen applying simulated annealifgg. 1] - is relaced by aslightly more
simple instruction of a threshold decreasdditionally, a monotonic and linear decreasing
threshold function is used arttie threshold is decreased afterfibeed number of trials
(modifications).

In the resulting threshold accepting algorithm for makespammization (TAMM) solution
candidates are coded as taskotr sequences, entered e.g. imatrix row by rowfor the in-

dividual machnes. Aninitial solution iscreated byrandomly generating such sequences. In
order togeneate schedules, theask sequences serve as input for glk&reuristic schedule
buildertogetherwith the given machinesequences of thebs andthe given operationtimes.

The schedule builder tries to build up a schedule according to the proposed sequences. In cases
of mutually blockingsequences (i.e. it inot possible to schedule aryperation on any
machine), a repair algorithm changeee of the sequences/ing priority to an operation cur-

rently to be processed on the seleatethine while shifting as fewther operations as pos-

sible.

Significant improvements dhe TAMM algorithm have been attained bgplementing two
extensions: Firstly,the modification operdor, generating neighbourhood solutions by
exchangingtwo randomly chosen elements tine operation sequence ofrandomly chosen
machine, is restricted to suceg® operationdying on acritical path of the consideresthe-
dule. Secondly, anperator is addegderforming localhill-climbing by modifyingthe task se-
qguences in a randomly chosen order. Within this opecaligrmodifications resulting in higher
solution quéties are accepted. Each sequencenidified as long agny improvement is
attained. Because eaamodification causes eebuilding ofthe schedule and, in case of im-
proved quality, maybe even tife critical path,this local searcloperator is/ery expensive and
therefore should be used carefully.
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Some firsttests of thaimproved version of TAMM concernethhe shape of the threshold
function to be usedvithin a given runtime limitj.e. thecombination of a threshold’start
value andhe number of trials permitted at each threshieltl. The range of possibleombi-
nations idimited bythe given runtime which can beanslated into an overall number of trials
permitted.

As a result of the considerégists,combinations of higlthreshold’sstartvalues and lowum-

bers of trials permitted at each threshiaigel clearlyoutperformes reverse combinations. Or,
alternativelyspoken, compared to the ‘threshstthemes’ originallpsed in TAMM, thenum-

ber of trials needed teatisfy a given solution qualitylsvel can be reducedsing highthresh-

old’s start values and low number of trials permitted at each threlgiveld Clearly, this result
expressesnly a tendencyvithout claiming general validity. Nevertheless, it led tahard ex-
tension of the TAMM algorithm, considering the use of the ‘released’ number of trials in a way
that the solutiorquality isfurther improved: The rule of a monaiio decreasinghreshold is
replaced by a threshold wavimtpwn and up between gmitial high) upperlevel and zero

with a decreasing amplitude, i.e. an upper level decreasing from ‘wave to wave’. Thus, the new
algorithm is called threshold wavi{@W). The TWalgorithmfor job shopscheduling igpre-
sented in Figure 1 (for the sake of glmty it is supposed that thimitial value of thresh-
old_upper_limitis positive).

2.2 Parametrization

In detail, TW can be controlled by adjusting the following parameters (not all explicitly listed in
Figure 1): The startingvalue (hresholdstart of the threshold’s uppdmit (threshold_up-
per_limit) as well aghe number of trialsafter which the threshold is reduced or raisembrt
mal_wavdactor).

Sometimes it seems to be advantageowstrgich the search of regions of slow convergence,
i.e. of high solution qualitylevelsand low threshold’s uppdimits. Therefore, a parameter
max_wavefactois introduced replacinghe nomal wavefactor wherthe threshold’s upper
limit falls below a valuavavefactor_limit

Consideringhe modificationoperator, thenumber of randonoperation exchanges performed
each timehe operator isalled is bouded by thevalue ofmax_modification_factorAn exact
(integer) value is, also randomly, chosen from the intervahflx _modification_factgr

Finally, due to itshigh cost, theapplication ofthe lacal searctprocedure isloubly controlled:
Firstly, permanent local search (ifellwing each singlenodification) is permted only after
reaching a thresholdigpperlimit of local_search_limit Secondly, a proltélity for the apli-

cation of local search igiven bythe value local_search_probabilityindepedent from the
threshold or the threshold’s upper limit.
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THRESHOLD WAVING

initialize candidate, threshold_upper_limit, thresheldhreshold_upper_limit,
wavefactor, trials— 0, temp_optimum- candidate
compute makespan (candidate) within BUILD_SCHEDULE (candidate)
determineCRITICAL_PATH (candidate)
loop new_candidate MUTATION (candidate)
compute makespan (new_candidate) within BUILD_SCHEDULE (new_candidate)
determineCRITICAL_PATH (new_candidate)
randomly or deterministically perform LOCAL_SEARCH (new_candidate)
trials — trials + 1
AE — makespan (candidate) - makespan (new_candidate)
if AE >0 then temp_optimum- new_candidate
if AE > (-1)threshold then candidate new_candidate
if trials = wavefactor then
trials < O
if threshold = 0 then
threshold_upper_limit- threshold_upper_limit - 1
if threshold_upper_limit = 0 then th_adder0
else th_adder 1
elsif threshold = threshold_upper_limit then th_addef-1)
threshold threshold + th_adder
until (threshold = 0) and (threshold_upper_limit = 0)
solution — temp_optimum

Figure 1. Threshold waving algorithm

3 Computational results

Tests are performed lmsingtwo well-establishedlata sets oFisher and Thompson [9]: The
processing of 10 jobs on Xfachineq‘10x10-problem’) aswvell as of 20 jobs on &achines
(‘20x5-prablem’). The optimum makespan valuae 930 for 10x10-problem and 1165 for
20x5-problem, respectively. The parameter settings used foarEWisted below imable 1.
The lastrow indicatesthe number of repetitionsrns) of TW with the respective parameter
setting.

The cited parameter were determined in a trial and error process trying to fit an arbitrarily fixed
mean runtime value of 3econds for the 10x10-dlem. The attained settings resulted in a
mean runtime of about 45 seconds for the 20x5-problem and haveet@doptedagain by

trial and error) to lead to solution qualities as good as possible within the given time frame.
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10x10-problem

20x5-problem

thresholdstart 95 105
normal_wavefactor 1 3
max_wavefactor 5 3
wavefactor_limit 3 0
max_modification_factor 2 2
local_search_limit 3 0
local_search_probability 0.2 0.02
runs 1,000 1,000

Tab. 1: Parametrization

Computational results are presented @ble 2 and refer to amplemenation of TW written
in Pascal on a Pentium-based @0 MHz). Thedistributions of the solutiogualitiesfor both
problemsare shown in Figure 2 and Figure 3. Madues ofthe worstsolutions obtained are
1034 for the 10x10-problem and 1282 for the 20x5-problem, respectively.

10x10-problem

20x5-problem

best found solution quality (makespan) 930 1165
mean solution quality (makespan) 973.93 1203.54
average deviation from optimum [%] 4.72 3.31
standard deviation 20.06 19.15
mean runtimgy, [sec] 30.14 45.18
mean runtimgeg[sec] 18.14 36.44
shortest time for detecting optimum [sec] 2.80 38.94
mean initial solution quality 3339.37 3589.13
correlation (initial and best solution quality) = 0.0004 =-0.0003

Tab. 2: Computational results
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Fig. 4: Convergence of TW for the 10x10-problem

Remarks (1) Besidethe waving threshold, a versteep thresholéunction isthe mostsignifi-
cant characteristic of TW, appearingonly 1 to 3 trialsper actual thresholdsingthe cited
parametrization(2) Note thevery shorttime of 2.8 seconds for detecting tbptimum value
of 930 for the'famous’ 10x10-prokem. This value, even gupported by a stroke aick, il-
lustrates the strength of the convergence properties of TW (see &)g(B¢ It should also be
mentioned thathe usedschedulebuilder does not produan-delayed optheractive sche-
dules (just semi-activ@nes). Nevertheless, comparisons the algorithm of Giffler and
Thompson[10], producingactive schedules, revealdlte superiority of the used algorithm,
indicated by asignificantly betterconvergencg¢l3]. (4) A testusingthe parameter settings of
the 20x5-problem fosolving the 10x10-problenfed to a mean solution quality 666.81, a
standard deviation of 14.88, andrean runtime 0#0.03 seconds. Use of parameter settings
of the 10x10-problem fasolvingthe 20x5-problented to a mean solution quality @212.55,
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a standard deviation of 24.70, andn@an runtime o#3.98 seconds. (S)\eglecting local
search, theuntime of TW ismainly determined by thaumber of trials working asfactor for
the runtime(s) of the algorithm(s) for building up schedules and critical pats.be thenor-

mal_wavefactqrn the thresholdstartb the max wavdactor, ands the wavefactor _limit The
number of trials is then given bya(n2+1) + (b-a)-(s>+s+1)].

4 Comparison

Concluding,the presented results are compared to the results of @bereauthorsising the
same ‘problem artefacts’ of Fisher and Thompson:

the branch&bound algorithm of Barker and McMahon [3]

the branch&bound algorithm of Carlier and Pinson [4]

both shifting-bottleneck-procedures of Adams, Balas and Zawack [2]

two (hybrid) genetic algorithms of Dorndorf and Pesch [5]

the genetic algorithm of Fang, Ross and Corn [8]

(BM)
(CP)

(SB1, SB2)
(DP1, DP2)
(FRC)
the simulated annealing approach of Van Laarhoven, Aarts and Lenstra [14] (SAL,...,SA4)
the TAMM algorithm [13]

(TAMM)

Table 3 summarizes solutions qualities and runtimes obtaindtelbyentioned approaches, a
selected parametrization of TAMM frofd3] and TW.Runtimes valuesre rounded off, if
necessary, and found optimum valuesvai ascorresponding runtime valuese marked by
bold types. Because of the close relation to @Wpur parametrizations proposed[i#] are
listed for the algorithm SA.

10x10-problem

20x5-problem

Tab. 3: Comparison of solution qualities and runtimes

best / mean solution runtime [seq]  best/ mean solutjon runtime [sec]

BM 960 193 1303 132
CP 930 3305 1165 1234
SB1 1015 10 1290 3
SB2 930 851 1178 80

DP1 960 932 1249 1609
DP2 938 106 1178 95
FRC 949 < 1500 1189 < 180(
SAl 1028/ 1040 113 1325/ 1354 12
SA2 951/ 986 779 1184/ 1229 848
SA3 937/ 942 5945 1173/ 1187 684D
SA4 930/ 933 57772 1169 1173 62759

TAMM 930/ 1007 194 1165 1213 265

TW 930/ 974 30 1165/ 1203 45
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Remark It should benoted that, due tdifferentcomputersystems serving as bages imple-
mentations andests of thelifferent approaches, no diremdmparability ofthe stateduntime
values is given. Thiollowing computersystemsareindicated bythe authors: BMCyber171,

CP: PRIME 2655, SBx: VAX 780/11, DPx: DECstation 3100, FRC: SUN-4, SAx: VAX 785,
and TAMM: PC 80486 (66MHz).

5 Outlook

With regard to the practicapplicability, the effectiveness of aapproach is just a necessary,
not, hovever, a sufficient condition. A proof of adaptability and flexibility of TW by applying it
to different real-worldprodems should be the nexdtep creating aersatile algorithm as a
useful toolfor the development abperdional systems. Due tthe multitude of introduced
parameters, the parametrization of TW is a f@wmbofits own, suffering fronthe combinato-

rial ‘explosion’ of possiblgparameter combinations. Thus, another requirement for further de-
velopments ighe implementation of amutomated parameter tuning, perhagploiting pos-
sibilities of self-adaptation.
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