
UNIVERSITY OF LEIPZIG

Institute of Production Management
and Industrial Information Management

Marschnerstr. 31, 04109 Leipzig, Germany

Phone: [49] / (0)341 / 4941-182, Fax: -125

Report No. 16

An Efficient Scheduling Algorithm
Based upon Threshold Accepting

Jukka Siedentopf

〈siedentopf@wifa.uni-leipzig.de〉

- to appear -

March 1995

Index

1 Introduction 1

2 The Problem 1

3 The Algorithm 2

3.1 The Iterative Search Process 2

3.3 The Scheduling Process 5

4 Test and Results 8

4.1 Data 8

4.2 Solution Qualities and Runtimes 9

4.3 Further Results 10

4.3.1 Impact of the Starting Configuration´s Quality 10

4.3.2 Some Remarks upon the Performance of TAMM 12

4.3.3 The Topology of the Solution Space 14

5 Comparison with Other Approaches 15

6 Conclusion and Outlook 18

References 19

Summary

A mutation-selection approach for the general job shop scheduling problem is presented. The

underlying algorithm uses threshold accepting as an iterative search technique generating al-

ternative operation sequences for the machines of the job shop. Search is combined with a

simple heuristic algorithm transforming operation sequences into a schedule. Effectiveness of

the approach is demonstrated within a comparison with some well-known heuristic and exact

algorithms, which in part are clearly outperformed.

Remark: This report is a shortened and slightly changed version of report No. 4 of the Insti-

tute of Production Management and Industrial Information Management.

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 1 -

1 Introduction

Facing combinatorial optimization problems, approximation approaches are proposed as alter-

natives to somewhat more conventional approaches of mathematical programming. Some of

these approaches make use of stochastic processes to prevent premature termination in local

optima. A common characteristic of the proposed approaches is the principle of generating

new solution candidates, so-called configurations, by performing (stochastic) perturbations,

so-called mutations, of already available configurations. Another characteristic is that the se-

lection of configurations permitted to remain in the solution process depends not only on the

quality of the solution represented by the considered configuration but also on external para-

meters. Furthermore, the selection can be made in an either deterministic or probabilistic way.

The number of involved configurations can serve as a classification criterion for mutation-se-

lection procedures: In genetic algorithms, a multitude of configurations is managed in a popu-

lation. Availability of several different configurations is an indispensable requirement for re-

combination of new configurations from the building blocks of already available ones. Re-

combination is the predominating principle for generating configurations in genetic algorithms.

Mutation serves for adding new building blocks by implementing small stochastic perturbations

in the available building material.

In another more simply structured class of mutation-selection approaches, only one configura-

tion undergoes a process of mutation. A decision as to selection is reduced to a decision

whether a new, modified configuration will replace the old one or not. Examples for such

procedures are threshold accepting, simulated annealing or the great deluge algorithm.

The number of involved configurations limits the number of steps in the solution space, which

can be examined during one iteration of the underlying process. The processes can thus be in-

tuitively classified as multidirectional and unidirectional processes.

Complex scheduling problems have been a main emphasis particularly of the application of ge-

netic algorithms since about the middle of the 80ies (e.g. Forrest 1993). Despite evident simi-

larities, unidirectional methods only occasionally have been concerned as an alternative - even

systematic comparisons of the approaches are missing. The submitted contribution sketches

development and test of a scheduling algorithm based upon threshold accepting. The algorithm

was originally developed for the purpose of a comparison with a specific genetic algorithm and

adopts several modules of that algorithm (see sections 3.2 and 3.3).

2 The Problem

The considered scheduling problem is an incarnation of the general job shop scheduling prob-

lem (e.g. French 1982):

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 2 -

• n jobs {J1, J2, ... , Jn} are to be processed on m machines {M1, M2, ... , Mm}.

• Each job is to be processed exactly once on each machine; processing a job on a machine

is also referred to as an operation or a task.

• Each job must run through the machines in a specific technologically conditioned order

(machine sequence). Different machine sequences for different jobs are permitted.

• The sequences the jobs are to be processed in on distinct machines (task or operation se-

quences) are subject of disposal.

• The processing times of the operations are known and constant, i.e. independent of

precedence relationships. Setup and transportation times are not considered, and inter-

ruption of the processing of an operation is not permitted (non-preemptive case).

• The mission is to determine task sequences respecting machine sequences and optimizing

the value of a given objective function. In the following, the objective of minimizing the

period of time for complete processing of all jobs (makespan) is considered.

3 The Algorithm

The presented scheduling algorithm is based on threshold accepting as presented from Dueck

and Scheuer 1990 or - as a part of a multi-phase process (mutation selection strategy with

destabilization phase) - from Ablay 1987. Threshold accepting supplies the base structure of a

unidirectional iterative search process for generating and selecting configurations (section 3.1).

A configuration represents a suggestion for (all) the machine sequences. The sequences are

modified during the solution process (section 3.2), and for the purpose of evaluation a

configuration is transformed into a schedule by means of a simple heuristic scheduling algo-

rithm eliminating occasionally occuring inconsistencies (section 3.3).

3.1 The Iterative Search Process

The considered algorithm (Threshold Accepting for Makespan M inimization - TAMM) is pre-

sented in Fig. 1. The algorithm is initialized by a configuration (candidate), a start value for the

parameter threshold, and an instruction determining the reduction of threshold in the lapse of

time. This instruction includes the quantity of the respective reduction (threshold_lower_step)

as well as the number of iterations after which a reduction is enforced (change_threshold_all).

Besides, a termination criterion is defined. The criterion indicates the number of unsuccessful

iterations (iterations without any increase of solution quality) leading to a termination of the

process (max_unsuccessful_trials).

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 3 -

In step (1) the quality (makespan) of the configuration is determined. This is performed by

timetabling the operations according to the proposed task sequences by a module called

BUILD_SCHEDULE. During this scheduling process it might become necessary to eliminate

inconsistencies within the task sequences (section 3.3).

In step (2) mutation is used to choose a new configuration (new_candidate) from the neigh-

bourhood of candidate. For that purpose, small (´local´) changes are installed in the task se-

quences represented by candidate (section 3.2, see e.g. Aarts and Korst 1989 for a formal de-

scription of neighbourhood structures in local search). Again the quality of new_candidate is

determined by timetabling the operations of the represented task sequences (step (3)). The dif-

ference of the qualities ∆ E of both configurations is calculated (step (4)), and an iteration

counter is actualized (step (5)) which is required for the reduction of the threshold in step (9).

If the quality of new_candidate does not exceed that one of candidate (∆ E ≤ 0, step (6);

higher quality corresponds to lower makespan and vice versa) a counter unsuccessful_trials is

updated. Otherwise, new_configuration is stored as the best current configuration

(temp_optimum) and the counter unsuccessful_trials is reset (step (7)).

In the following iteration of TAMM new_candidate will serve as a working basis if its solution

quality is better or not more than threshold worse than that one of candidate (step (8)). Hence,

in the next iteration a new configuration will be generated in the neighbourhood of new_can-

didate instead of candidate. The threshold is modified in step (9) if necessary. Subsequently,

the termination criterion is examined (step (10)) and, according to the result, the process either

is interrupted or - beginning with the mutation in step (2) - is repeated. In the case of discon-

tinuance, the best configuration found (temp_optimum) is made available to any further

processing as an approximization of the aspired optimum (solution, step (11)).

The underlying approximization process corresponds largely to the better-known simulated an-

nealing (see e.g. Aarts and Korst 1989). A significant difference is due to the acceptance of

new configurations: In contrast to simulated annealing, threshold accepting does without prob-

abilities of acceptance. Hence, the formulation of a cooling or annealing schedule, a very

critical task in applying simulated annealing (cf. Aarsts and Korst 1989, pp. 57, or Dueck and

Scheuer 1990, p. 162), is replaced by a (more simple) instruction of a threshold decrease.

3.2 Representation and Modification of Configurations

Originally, TAMM has been developed to be compared with an algorithm of Nakano and Ya-

mada based on a ´classical´ genetic algorithm (Nakano and Yamada 1991). Nakano and Ya-

mada code configurations as sequences of binary values (bitstrings) and produce new confi-

gurations applying the standard recombination operators of mutation and crossover (Holland

1975). The announced comparison should explore whether the impact of a multidirectional

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 4 -

search and the recombination in the genetic algorithm can compensate for the disadvantages of

a binary representation. On one hand, the rejection of recombination within threshold accepting

enables the introduction of a symbolic representation of configurations in TAMM. On the

other hand, the modification and evaluation components in the algorithm of Nakano and Ya-

mada are left unchanged in functionality - adapted only to the new representation.

THRESHOLD ACCEPTING FOR MAKESPAN MINIMIZATION

START

initialize candidate
threshold
threshold_lower_step
change_threshold_all
max_unsuccessful_trials
trials ← 0
unsuccessful_trials ← 0
temp_optimum ← candidate

compute makespan (candidate) within BUILD_SCHEDULE (1)

LOOP

select new_candidate in the neighbourhood of candidate (2)

compute makespan (new_candidate) within BUILD_SCHEDULE (3)

∆E ← makespan (candidate) - makespan (new_candidate) (4)

trials ← trials + 1 (5)

IF ∆E ≤ 0 THEN (6)
unsuccessful_trials ← unsuccessful_trials + 1

ELSE (7)
temp_optimum ← new_candidate
unsuccessful_trials ← 0

IF ∆E > (-1)⋅threshold THEN candidate ← new_candidate (8)

IF trials = change_threshold_all AND threshold > 0 THEN (9)
trials ← 0
threshold ← threshold - threshold_lower_step

UNTIL unsuccessful_trials > max_unsuccessful_trials (10)

solution ← temp_optimum (11)

END

Fig. 1: TAMM

In the approach of Nakano and Yamada, task sequences are represented as lists of binary

precedence values. A precedence function precedence(oij , okj) receives value 1, if job i is

processed before job k on machine j, and value 0 otherwise. The representation of a confi-

guration comprises all precedence values among operations to be processed on the same

machine. It is obvious that lists of binary precedence values does not neccessaryly represent

admissible sequences. Consider, for instance, for a machine x the following precedence values:

precedence(o1x, o2x) = 1 ∧ precedence(o2x, o3x) = 1 ∧ precedence(o1x, o3x) = 0

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 5 -

The two first values denote that job 1 should be processed before job 2 and job 2 before job 3.

Because of the transitivity of the precedence relationship, job 1 should have to be processed

before job 3, too. This, however, contradicts the third precedence value. Thus the above-men-

tioned bitstring (1,1,0) does not present a permissible job permutation for machine x. For eli-

minating the sketched inconsistencies, Nakano and Yamada propose a repair algorithm called

local harmonization which should produce a permissible job permutation for a considered

machine while ´flipping´ a minimal number of bits.

Since binary coding in the approach of Nakano and Yamada serves only for the applicability of

conventional crossover and mutation operators and threshold accepting works without these

operators, it can dispense with a binary representation. Schedules are coded directly as task se-

quences, which are entered in a matrix row by row for the individual machines. In Fig. 2 an ex-

ample of a configuration for the processing of 4 jobs on 4 machines is presented.

1st position 2nd position 3rd position 4th position

M1 J1 J2 J3 J4

M2 J3 J4 J2 J1

M3 J2 J3 J1 J4

M4 J4 J3 J1 J2

Fig. 2: Representation of configurations

In the described implementation of TAMM, neighbourhood solutions are generated by

exchanging two randomly chosen elements in the job sequence of a randomly chosen machine

(simple modification) or by repeating this change n times (n-fold modification with n ≥2). This

mutation operator always generates job permutations as complete and - on machine level -

permissible task sequences. Thus, local harmonization is not required in TAMM.

3.3 The Scheduling Process

The task sequences coded in configurations are scheduled by means of a simple heuristic al-

gorithm. As a basic element of this algorithm a schedule condition is formulated which settles

that a job i can be scheduled on a machine j if, and only if

• j is the current machine according to the machine sequence of job i and

• i is the current job according to the job sequence of machine j.

By means of this schedule condition the algorithm presented in Fig. 3 can be implemented.

First, a quantity of all operations not yet scheduled (unscheduled_operations) is initialized with

all operations to be scheduled (step (1)). An iteration of the scheduling process is introduced, if

this quantity is not empty (step (2)). Within an iteration, the schedule condition is examined

(step (5)) for each machine (loop (4)). Occasionally, a concerned operation is scheduled on the

corresponding machine and removed from the quantity of unscheduled operations. Besides, a

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 6 -

flag called at_least_one_operation_scheduled, which has been initialized in step (3), indicates

that in loop (4) an operation has been scheduled.

If in a run of loop (4) no operation could be scheduled on any machine, the underlying confi-

guration contains a type of inconsistency which is manifested by mutually blocking task se-

quences of different machines. The elimination of such an inconsisteny is carried out by another

repair algorithm introduced by Nakano and Yamada, called global harmonization (module

GLOBAL_HARMONIZATION in step (6)).

BUILD_SCHEDULE

START

initialize unscheduled_operations (1)

WHILE unscheduled_operations ≠ {} LOOP (2)

at_least_one_operation_scheduled ← FALSE (3)

FOR all machines LOOP (4)

IF schedule_condition (operation) THEN (5)
schedule (operation)
unscheduled_operations ← unscheduled_operations \ {operation}
at_least_one_operation_scheduled ← TRUE

IF NOT at_least_one_operation_scheduled THEN (6)

call GLOBAL_HARMONIZATION

END

Fig. 3: Scheduling algorithm

Fig. 4 illustrates the problem of blocking using a simple example of processing two jobs on two

machines. The rows of the machine sequence matrix indicate the sequence for each job (J1 and

J2), the machines (M1 and M2) must be run through. The rows of the job sequence matrix

(configuration) indicate the proposed processing order of both jobs for both machines.

Machine sequence: Configuration:

1st position 2nd position 1st position 2nd position

J1 M1 M2 M1 J2 J1

J2 M2 M1 M2 J1 J2

Fig. 4: Blocking on schedule level

The interpretation of the configuration´s first row in Fig. 4 yields that J1 has to wait in front of

M1 until processing of J2 is finished. According to its machine sequence, J2 is to be processed

on machine M2 first - and has to wait in front of that machine until processing of J1 is finished

(second row of the configuration matrix). However, this is not permissible, since according to

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 7 -

the second row of the machine sequence matrix J1 is to be processed on M1 before - and is still

waiting there for J2 to be finished.

Because the sketched type of inconsistencies on schedule level is not recognized before sche-

duling is performed, the mentioned repair algorithm is embedded into the scheduling process.

Unlike local harmonization, global harmonization does not work on the original binary repre-

sentation anymore, but on a derived symbolic representation like that presented in Fig. 4. Thus,

the originally proposed repair algorithm could be integrated in TAMM.

In the case of a blocking, the task sequence of a single machine is changed during global har-

monization in a way that a job is given priority which fulfils the schedule condition for the

considered machine. For a job Ji which is still to be processed on a machine Mj the function

distance (Ji, Mj),

indicates the number of jobs preceding Ji according to the task sequence of Mj. By means of

the function distance, the structure of the global harmonization can be depicted as follows

(Fig. 5):

GLOBAL_HARMONIZATION

START

FOR all Ji ∈ unscheduled_jobs LOOP (1)

select next machine Mj from machine sequence of Ji

compute distance (Ji, Mj)

Dmin ← mini,j (distance (Ji, Mj)) (2)

select Mj* with distance (Ji, Mj*) = Dmin for any Ji (3)

remove Ji from the job sequence of Mj* (4)

shift first Dmin jobs in the job sequence of Mj* for one position (5)

insert Ji in the first position of the job sequence of Mj* (6)

END

Fig. 5: Global harmonization

First, for each element of a set of not completely scheduled jobs (unscheduled_jobs) the next

machine, according to its machine sequence, is selected, and the value of the function distance

is calculated for the selected machine (step (1)). The minimum Dmin of all calculated distance

values is determined (step (2)), and the machine holding that minimum is selected (step (3)).

Because Nakano and Yamada do not indicate any tie breaking rule for the case that the mini-

mal distance is determined for more than one job, in the considered implementation of TAMM

such conflicts are solved by choosing the first-found minimum. The corresponding job holding

that minimum is moved into the first position of the task sequence of the selected machine

(steps (4) and (6)). Thereby, all the jobs to be processed before the considered job acoording

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 8 -

to the current task sequence of the machine are shifted by one position (step (5)). Subse-

quently, the scheduling algorithm resumes with step (2) in Fig. 3 using the modified task se-

quence.

Performing the described scheduling algorithm always results in a feasible schedule, in which

starting and completion times are assigned to each operation. The maximum of the completion

times of all last operations of the task sequences determines the value of the objective function

(makespan) of the considered configuration - presupposed that processing starts at the time 0.

4 Test and Results

4.1 Data

TAMM has been tested using the data sets of Fisher and Thompson which have been establis-

hed in literature as often used benchmarks (Fisher and Thompson 1963, pp. 236). Thus, com-

parisons with a variety of other algorithms for the job shop scheduling are possible. The results

presented in the following affect the problems of processing 10 jobs on 10 machines (´10x10-

problem´) as well as processing 20 jobs on 5 machines (´20x5-problem´). The optimum

(minimum) values of the makespan are 930 units of time for the 10x10-problem and 1165 units

of time for the 20x5-problem, respectively. The complexity of the considered test problems is

illustrated by the fact, that determination of an optimum schedule for the 10x10-problem

(including proof of optimality) succeeded for the first time only after more than 20 years of

research (Carlier and Pinson 1989).

Results are presented for six different parametrizations of TAMM as listed in Tab. 1. Parame-

ters are the starting value of the threshold (threshold), the number of iterations after which the

threshold is reduced (change_threshold_all), and the termination criterion (max_unsuccess-

ful_trials). Since in the calculation of the makespan only integer values can occur, the value of

threshold is always reduced for exactly one unit (parameter threshold_lower_step in Fig. 1).

The last row in Tab. 1 indicates the number of repetitions (runs) of TAMM with the respective

parameter setting.

set 1 set 2 set 3 set 4 set 5 set 6
threshold 15 100 30 10 5 30
change_threshold_all 10,000 1,000 1,000 10,000 1,000 10,000
max_unsuccessful_trials 30,000 10,000 3,000 20,000 3,000 100,000
runs 1,000 200 200 200 200 100

Tab. 1: Parameter settings

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 9 -

4.2 Solution Qualities and Runtimes

Tables 4 and 5 display the results of the tests for both problems with regard to the achieved

solution qualities and required runtimes. The results refer to a Pascal-written implementation of

TAMM on a PC 80486 (66 MHz). As to solution qualities, the following values are cited:

• the best solution of all runs (best solution, optimum values are marked by bold types),

• the mean of the solutions (mean solution),

• the average deviation of the solutions from the optimum in percent

(average dev. from opt. [%]),

• the standard deviation of the solutions (standard deviation),

• the mean variation of the solutions (mean variation),

and concerning runtimes, respectively:

• the mean runtime in seconds (mean runtimetotal [sec]),

• the mean runtime for detecting the best solution in seconds (mean runtimebest [sec]).

set 1 set 2 set 3 set 4 set 5 set 6

best solution 930 951 979 930 1015 951

mean solution 1000.87 1045.58 1046.48 1006.54 1120.86 998.26

average dev. from opt. [%] 7.62 12.43 12.52 8.23 20.52 7.34

standard deviation 24.43 26.03 23.63 23.85 45.22 22.59

mean variation 596.65 677.80 558.17 568.88 2044.53 510.19

mean runtimetotal [sec] 273.95 192.43 54.11 193.57 13.26 646.13

mean runtimebest [sec] 180.39 173.99 47.68 112.53 8.84 438.19

Tab. 2: Results for the 10x10-problem

set 1 set 2 set 3 set 4 set 5 set 6

best solution 1165 1198 1192 1165 1264 1173

mean solution 1205.48 1296.34 1289.59 1212.74 1380.76 1202.94

average dev. from opt. [%] 3.47 11.27 10.69 4.10 18.52 3.26

standard deviation 21.18 35.45 34.97 25.47 40.19 21.75

mean variation 448.78 1256.71 1222.88 648.67 1615.15 472.88

mean runtimetotal [sec] 390.00 268.00 76.34 264.55 20.37 914.15

mean runtimebest [sec] 285.07 244.62 69.00 186.83 14.50 641.10

Tab. 3: Results for the 20x5-problem

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 10 -

The shortest runtimes measured for detecting the optimum makespan values of 930 and 1165,

respectively, have been 97.22 seconds for the 10x10-problem (set 4) and 178.28 seconds for

the 20x5-problem (set 4).

The cited parameter settings (Tab. 1) were not determined analytically, but more arbitrarily in a

trial-and-error-procedure: First, the only requirement for any combination of parameter-values

has been a maximum runtime of 10 minutes (600 seconds). Set 1 obtains best results for both

problems in that case. Later, comparisons with parameter settings leading to mean runtimes of

clearly over 10 minutes showed that the results of set 1 could hardly be improved within the

realized implementation of TAMM. Set 6 serves as an example: An extension of the runtime

(mean runtimetotal) from approximately 4.5 to almost 11 minutes (10x10-problem) and from

approximately 6.5 to over 15 minutes (20x5-problem), respectively, yields only slight im-

provements of mean solution quality (just about approximately 2.6 units of time) as well as of

the standard deviation and mean variation values.

Comparison of set 2 and set 3 elucidates that TAMM reacts very sensitively to the choice and

combination of the parameter values despite its simple parametrization. Set 3 leads to compa-

rable results in less than 30 % of the runtime on average: For the 10x10-problem almost identi-

cal mean solution values are determined as well as an even somewhat slighter deviation; how-

ever, the best solution found is 28 units of time worse, when compared to set 2. For the 20x5-

problem set 3 even dominates with regard to the presented results, since all values of the best

solution found as well as of the mean solution quality as well as of standard deviation and

mean variation are better than those determined with set 2.

Set 4 obtains the best results with regard to determination of optimum solution qualities, since

these values are found faster than with set 1. Set 5 serves as an example for results TAMM is

able to produce facing restrictive runtime-requirements.

4.3 Further Results

4.3.1 Impact of the Starting Configuration´s Quality

The results presented above have been produced by creating the starting configuration ran-

domly, i.e. permutations of job sequences are created randomly for each machine. As a rule,

TAMM starts with configurations of quite a bad quality (see Tab. 4). To explore the influence

of the quality of the configuration TAMM is starting with, two alternatives were tested on the

10x10-problem:

1. The algorithm of Giffler and Thompson (Giffler and Thompson 1960) is used to produce

starting configurations. The algorithm always generates an active schedule as an schedu-

le, in which it is not possible to start the processing of any operation earlier without de-

laying the processing of at least one other operation. The job sequences, which are

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 11 -

implicitly contained in the generated schedule serve as an initial configuration for

TAMM. Subsequently, TAMM is started with parameter values of set 4.

2. TAMM is running in a two-phased process: First, it is started with set 5, terminating af-

ter approximately 13 seconds on average (see Tab. 2). Subsequently, it is restarted with

set 4 using the solution calculated in the first phase as an initial configuration.

The results of the tests - each repeated 200 times (200 runs) - are summed up in Tab. 4 (set 4

(G&T) and set 5 & set 4), and are opposed to the results of pure set 4 (see Tab. 2). In addition

to already introduced values, Tab. 4 indicates the mean value of the starting configuration´s

quality (mean initial solution) as well as the simple correlation coefficient between the starting

configuration´s quality and the best solution found (correlation coefficient).

set 4 set 4
(G&T)

set 5 &
set 4

best solution 930 936 952

mean solution 1006.54 1004.51 1007.91

average dev. from opt. [%] 8.23 8.01 8.38

standard deviation 23.85 31.92 21.99

mean variation 568.88 1018.72 483.46

mean runtimetotal [sec] 193.57 186.48 191.93

mean runtimebest [sec] 112.53 104.02 109.91

mean initial solution 3329.55 1334.57 1112.60

correlation coefficient - 0.002 + 0.003 + 0.004

Tab. 4: Results for different initial configurations (10x10-problem)

According to the values of Tab. 4, a significant correlation between the initial configuration´s

quality and the best solutions found does not exist. Fig. 6 displays the convergence of TAMM

as development of the solution quality in the lapse of time, for both a randomly chosen run and

an optimum run, respectively (set 4, 10x10-problem). The graph provides a rather plausible

explanation for the above mentioned result: Even with set 4 TAMM reaches after only a few

seconds the same solution qualities it was initialized with in the above mentioned alternatives .

There is no satisfactory explanation for another phenomenon: the extraordinary high deviation

values resulting when TAMM is initialized with configurations which have been generated with

the algorithm by Giffler and Thompson. It can only be supposed that an initialization with

configurations representing active schedules tends to hinder the algorithm: Because active

schedules are somehow pre-optimized with regard to their inner structure, it might be more

difficult to achieve improvements by simply exchanging two operations. Anyhow, an empirical

confirmation of this hypothesis has yet to be given. Fig. 7 gives a confrontation of the conver-

gences of a randomly chosen run with initialization by the Giffler/Thompson-algorithm (set 4

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 12 -

(G&T)) and without that initialization (set 5 & set 4), each for the first 10 seconds (within this

timeslot the (set 5 & set 4)-run equals a pure (set 5)-run, because in the presented run an

exchange to parameter values of set 4 is carried out not until 12.8 seconds). The graph shows,

however, that convergence is actually very slow in the area of the (active) initial solution, and

particularly slower than that one of the (set 5 & set 4)-run at about the same level of quality.

3000

930
0 100 200

makespan

runtime [sec]

: optimal run

: randomly chosen run

1300

1100

Fig. 6: Convergence of solution quality (10x10-problem, set 4)

3000

930
0 8 10

makespan

runtime [sec]

: set 4 (G&T)

: set 5 & set 4

2 64

1300

1100

Fig. 7: Convergence of solution quality for set 4 (G&T) and set 5 & set 4

4.3.2 Some Remarks upon the Performance of TAMM

Above all, mutation-selection approaches have achieved promising results in applications for

traveling salesman problems (e.g. Dueck and Scheuer 1990 or Dueck 1993). In symmetric

traveling salesman problems, modified configurations can easily be produced by breaking up

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 13 -

two or more connections within a tour and knotting new connections between the involved

nodes such that again a valid tour is produced. A feature of that procedure is that the length of

a new tour does not have to be calculated completely new. Instead, the length of the old tour is

decreased by the sum of the lenghts of broken-up connections and increased by the lengths of

newly knotted connections which can directly be taken from a given distance table. In contrast,

to determine the quality of a new configuration for a scheduling problem, it is generally

necessary to create a completely new schedule - even after slight changes of the job sequences

as the proposed exchange of only two operations in the job sequence of one machine.

In the described implementation of TAMM, the number of accomplished exchanges of opera-

tions - and thereby of required complete scheduling runs - amounts partly to a few hundred

thousands. Using set 6, for example, the threshold is reduced down from a value of 30 every

10,000 iterations. Thus, a run reaching a threshold of 0 requires the building of at least

300,000 complete schedules. The performance of the scheduling algorithm thus has an essen-

tial influence on the performance of TAMM.

The implemented heuristic scheduling algorithm requires 0.615 milliseconds on average to

build up a schedule for the 100 operations of the 10x10-problem. This holds under the condi-

tion that the underlying configuration represents a permissible solution, so no repair-function-

ality is needed to create valid task sequences.

The number of configurations representing inadmissible solutions, resulting from arbitraryly

exchanging operations in the task sequences, is another influential factor to the performance of

the system. A test showed that simple modifications of admissible configurations produce

inadmissible ones with a probabilty of approximately 34 % - forcing calls of the repair algo-

rithm (global harmonization) in these cases. The required runtime for building up a schedule

increases up to 0.93 milliseconds on average. It should be pointed out that not only the inad-

missibility of a configuration is responsible for the increase of runtime requirement, but also the

´level of inadmissibility´ which is indicated by the frequency the repair algorithm is called while

generating a schedule. Additionally, a (small) part of the increase from 0.615 up to 0.93 milli-

seconds is caused by the process of the modification itself, although this part is less than 0.02

milli seconds.

Using 2-fold modifications the quota of inadmissible configurations increases to approximately

44.5 % and the resulting runtime required for building up a schedule to 1.14 milliseconds on

average. Although allowed, multi-fold modifications were not considered in further tests, since

they showed worse convergence as opposed to the simple modification in some early tests.

Building up a schedule with the algorithm of Giffler and Thompson requires 1.63 milliseconds

on average. Anyway, the algorithm is less suitable as a scheduling algorithm within TAMM,

since as input it receives only the (given) machine sequences and the (given) processing times

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 14 -

as well as an operator which rules the selection of an operation to be scheduled on a specific

machine in cases of conflict (e.g. a priority rule). A conflict-set comprises all operations which

could be processed currently at a specific machine and whose earliest possible processing times

overlap with the processing time of a reference operation. A conflict-set is always formed for

that machine on which the processing of any operation could be finished earliest. The corre-

sponding operation is the reference operation. Thus, variations of resulting schedules can only

be generated by varying the selection operator (that inculdes the possibility of solving each

conflict individually). However, a changed choice of a specific operation from a conflict-set

generally implies changes of the compositions of all the conflict-sets to be formed afterwards.

As a result, the control of the search process is lost, because it is no longer possible to generate

´similar´ configurations in a given neighbourhood.

By contrast, within TAMM, a (limited) similarity of configurations can be supposed in accor-

dance with neighbourhood definitions for continuous functions: From this follows that confi-

gurations which are similar with regard to their representation must have similar solution qua-

lities, too. Similarity of representation could be measured, for example, as the number of ope-

rations holding different positions in the task sequences of two configurations. This ´similarity

supposition´ is slightly supported by the approximately continuous convergence of TAMM

(see Fig. 6). Supposed that no correspondence between representation and solution quality can

be ascertained (like argued for a combination of TAMM and the Giffler/Thompson-algorithm

above), any search algorithm might behave as a random search process.

4.3.3 The Topology of the Solution Space

In view of missing techniques for the visualization of multi-dimensional spaces illustrations of

solution spaces of complex optimization problems often resort to the idea of a mountain range.

Hikers in the mountain range symbolize algorithms in search of the highest peak (maximization

problems) or the deepest valley (minimization problems). Even if this kind of illustration might

be quite a vivid one, it seems not to be very suitable, since it cannot always explain the success

(or even the failure) of the algorithms.

Regarding the 10x10-problem and set 4, the hiker could be e.g. a parachutist landing on a pla-

teau at an altitude of about 3,300 meters (mean initial solution in Tab. 4: 3,329.55) and

proceeding in search of the deepest valley, which can be found at an altitude of exactly 930

meters. Thus, he has to overcome a difference in altitude of approximately 2400 meters. Con-

sidering e.g. that set 4 does not allow any step leading more than 10 meters (threshold in Tab.

1) in height and that this limitation gets the more restrictive the lower the hiker comes, it ap-

pears impossible to leave even smaller valleys once they have been reached. Despite this

TAMM almost always reaches valleys not more than 120 m above the deepest valley.

Two possible explanations of this phenomenon could be:

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 15 -

• The idea of a hiker is not appropriate: On one hand, no continuous surface to move on

exists. On the other hand, due to the imperfect neighbourhood definition generating new

configurations does not neccessarily correspond to little steps in the ́mountain range of

quality´. The hiker rather jumps than walks - turning back to the starting point, if the

calculated landing point is located higher than the current location plus the current thres-

hold.

• Many more deep valleys seem to be located in the ́mountain range of quality´ than one

might suppose from geography. This hypothesis was confirmed through a simple test:

For each of the both problems one optimal configuration (with a makespan value of 930

and 1165, respectively) was taken as an initial configuration. Following, neighbourhood

solutions were generated using simple modifications until another solution with optimum

makespan was found. This procedure was repeated 500 times for both problems. Result:

for the 10x10-problem, 403 different solutions with a makespan of 930 were obtained

and for the 20x5-problem even 485 different solutions with a makespan of 1165.

5 Comparison with Other Approaches

Concluding, the presented results will be compared to the results of some other authors using

the same ´problem artefacts´ of Fisher and Thompson presented in section 4. These approaches

are:

• Both variants of the shifting-bottleneck-procedure of Adams, Balas and Zawack (Adams,

Balas, and Zawack 1988) (ABZ1 and ABZ2)

The first variant of the shifting-bottleneck-procedure (ABZ1) is based on an iterative

process optimizing the task sequence of a current bottleneck machine locally, in the sense

of a one-machine-problem. In a following step, the task sequences of the other machines,

even if determined beforehand, are (re-)optimized while leaving the task sequence of the

current bottleneck machine unchanged. The second variant of the shifting-bottleneck-

procedure (ABZ2) uses the first variant to determine an optimum path in a partial search-

tree through the sequences the non-bottleneck-machines will be (re-)optimized in.

• The algorithm of Fang, Ross and Corn (Fang, Ross, and Corne 1993) (FRC)

The algorithm FRC is a genetic algorithm using a symbolic representation (linear lists of

operations) as well as some recombination operators which have been developed espe-

cially for sequencing problems. As sketched for TAMM, generation of schedules is done

by a simple heuristic scheduling algorithm.

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 16 -

• Two algorithms of Nakano and Yamada (NY and YN)

The two approaches of Nakano and Yamada are genetic algorithms, too. The basic ideas

of the algorithm NY (Nakano and Yamada 1991) have been introduced in section 3. The

approach of the algorithm YN (Yamada and Nakano 1992) is based on a symbolic repre-

sentation as well as on a distinct crossover operator, using the algorithm of Giffler and

Thompson to recombinate new configurations.

• Two algorithms of Dorndorf and Pesch (Dorndorf and Pesch 1992) (DP1 and DP2)

The approaches of Dorndorf and Pesch are (hybrid) genetic algorithms, too. The first

one (DP1) uses the algorithm of Giffler and Thompson to generate schedules as well as

the mentioned before algorithm YN. During the evolutionary process of the genetic algo-

rithm, sequences of priority rules are produced which can be used to solve conflicts

within the scheduling process of the Giffler/Thompson-algorithm. The second algorithm

(DP2) is based on the second variant of the shifting-bottleneck-algorithm. Genetic search

aims at an optimum sequence of (re-)optimizing the task sequences of individual machi-

nes.

• The algorithm of Carlier and Pinson (Carlier and Pinson 1989) (CP)

The algorithm of Carlier and Pinson is a ´classical´ branch&bound approach. A schedule

is generated during the branching-procedure, determining exactly one of the two possi-

bili ties of processing two operations on a machine in each step. The bounding within the

algorithm is based on the solution of one-machine-problems.

• The algorithm of Barker and McMahon (Barker and McMahon 1985) (BM)

The algorithm of Barker and McMahon also represents a ´classical´ branch&bound ap-

proach. Contrary to Carlier and Pinson, a node of the search-tree always represents a

complete schedule. New schedules are produced from given ones by modifying the se-

quence of jobs within a distinct critical block of the schedule. A critical block is formed

by a set of operations which are successively processed on a machine. The last operation

of the critical block is the first operation of the schedule which is finished in time with the

current minimum of the makespan or later. As with the approach of Carlier and Pinson,

bounding is rested on the solution of one-machine problems.

Tables 7 and 8 display the results of the mentioned approaches for the 10x10- and the 20x5-

problem, respectively, comparing them with the results achieved by TAMM with set 4. Run-

times values are rounded off, if necessary, and found optimum values as well as corresponding

runtime values are marked by bold types. For TAMM the shortest runtime for detecting opti-

mum values is occasionally given in brackets. Exact runtime values for TAMM are 184.5

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 17 -

(97.22) seconds and 277.31 (178.28) seconds, respectively. The term n.v. states that no value

is given in the original literature.

FRC NY YN DP1 DP2 CP BM ABZ1 ABZ2 TAMM

best solution 949 965 930 960 938 930 960 1015 930 930
runtime [sec] <1500 n.v. 600 932 106 3305 193 10 851184 (97)

Tab. 5: Comparison of solution qualities for the 10x10-problem

FRC NY YN DP1 DP2 CP BM ABZ1 ABZ2 TAMM

best solution 1189 1215 1184 1249 11781165 1303 1290 1178 1165
runtime [sec] <1800 n.v. n.v. 1609 95 1234 132 3 80277 (178)

Tab. 6: Comparison of solution qualities for the 20x5-problem

Remarks:

• Due to different computer systems serving as bases for the implementation and the test

of the different approaches, no direct comparability of the stated runtime values is given.

The following computer systems are indicated by the authors:

- FRC: SUN-4

- YN: SUN SPARCstation 2

- DP1, DP2: DECstation 3100

- CP: PRIME 2655

- BM: Cyber 171

- ABZ1, ABZ2: VAX 780/11

For the algorithm NY no details about the used hardware are given. Assuming that with

regard to their computational power all listed systems dominate that one used for

TAMM (PC 80486, 66 MHz), the runtime values listed above underline the quality of

the results achieved with TAMM.

• The branch&bound algorithm CP proves the optimality of the calculated solutions. Con-

sideration of these proofs leads to runtimes of 17,985 seconds (!) (10x10-problem) and

1,448 seconds (20x5-problem), respectively.

• The good results of both variants of the shifting-bottleneck-procedure (ABZ1 and

ABZ2) could not always be confirmed in reimplementations of other authors (see e.g.

Dorndorf and Pesch 1992). Within their reimplementation, Dorndorf and Pesch achieved

combinations of solution qualities and runtimes for ABZ1 and ABZ2 as follows:

1031/0.5 seconds and 951/186 seconds (10x10-problem) as well as 1274/0.4 seconds

and 1240/10 seconds (20x5-problem).

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 18 -

• Details given about the algorithm NY are limited to the achieved solution qualities. The

algorithm has been reimplemented by Rohmann on a SUN SPARCstation 10 (Rohmann

1993). Rohmann runs tests over sections of the 10x10-problem (so-called scenarios, each

containing a subset of the 10 jobs) and stated average runtime values of 51 minutes for

scenarios with 50 operations (or 5 of the 10 jobs, respectively). For a single run using the

entire 10x10-problem, a runtime of 3 hours and 20 minutes is stated. Within this single

run, the parameters proposed by Nakano and Yamada, i.e. a population size of 1000 and

150 generations, have been used, while tests over the mentioned scenarios were accom-

plished with a population size of 500 over 300 generations. Nakano and Yamada give no

details about further parameters, e.g. about crossover and mutation rates, selection me-

chanisms etc.

Since TAMM surpassed these results of NY considerably, the initially announced exten-

sive comparison of both algorithms has been omitted.

• Although the algorithm of Barker and McMahon (BM) essentially is an optimizing al-

gorithm, optimum values are not found since runtime limitations were introduced when

calculating lower boundaries for the makespan.

6 Conclusion and Outlook

The results achieved with TAMM demonstrate that within the application for complex optimi-

zation problems good approximizations of optimum solutions can be achieved by means of

simple mutation-selection approaches. On one hand, regarding the results for the well-known

benchmark-problems of Fisher and Thompson, TAMM takes its place amongst the best known

algorithms for job shop scheduling. Particularly, none of the compared algorithms found the

optimum values for the given problems in similarly short times - although TAMM has been

implemented on the comparatively weak hardware basis of a PC 80486. On the other hand, the

high deviation of solution qualities indicates a significant weakness of the approach.

Up to now no parameter tuning has been introduced. More, arbitrarily chosen parameter values

were tried in single runs and the most encouraging combinations of parameter values were

selected afterwards. An adjustment of these values resulted only from the effort to admit ter-

mination of the algorithm not until a threshold level of 0 is reached. Thus, systematic parame-

ter tuning will be an objection to further development of TAMM. Particularly, possibilities of

self-adaption of the parameters should be explored. This appears to be a promising approach,

especially because of the simple parametrization of TAMM compared to genetic algorithms or

to simulated annealing.

Mutation of configurations offers another starting point for improvements: In the presented

version of TAMM the operations affected by a mutation are selected by sheer luck. For com-

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 19 -

parison the implementation of a bottleneck-sensitive version is planned that introduces a modi-

fication operator preferring exchanges of operations lying on a critical path in a graph-oriented

description of the underlying schedule.

With regard to the practical applicability of TAMM, the adaptibility of the algorithm must be

proved. This is particularly valid, because a proof of effectiveness using artificial problem-data

can at most be a necessary, not however a sufficient condition for applicability in operational

systems. For instance, from the point of view of efficiency employment of TAMM as a short-

time scheduling module within an interactive leitstand system is conceivable. In contrast, a

proof of adaptability to the specific requirements in a real-world planning environment is still to

be produced.

References

Aarts, E. and J. Korst (1989): Simulated Annealing and Boltzmann Machines, A Stochastic Approach
to Combinatorial Optimization and Neural Computing, Chichester et al.

Ablay, P. (1987): Optimieren mit Evolutionsstrategien, Spektrum der Wissenschaft, 7, 104-115.

Adams, J., E. Balas, and D. Zawack (1988): The Shifting Bottleneck Procedure for Job Shop Schedu-
ling, Management Science, 34, 3, 391-401.

Barker, J.R. and G.B. McMahon (1985): Scheduling the General Job-Shop, Management Science, 31,
5, 594-598.

Carlier, J. and E. Pinson (1989): An algorithm for solving the job-shop problem, Management Science,
35, 2, 164-176.

Dorndorf, U. and E. Pesch (1992): Evolution Based Learning in a Job Shop Scheduling Environment,
Research Memorandum 92-019, University of Limburg, Limburg.

Dueck, G. (1993): New Optimization Heuristics - The Great Deluge Algorithm and the Record-to-Re-
cord Travel, Journal of Computational Physics, 104, 86-92.

Dueck, G. and T. Scheuer (1990): Threshold Accepting: A General Purpose Optimization Algorithm
Superior to Simulated Annealing, Journal of Computational Physics, 90, 161-175.

Fang, H.-L., P. Ross, and D. Corne (1993): A Promising Genetic Algorithm to Job-Shop Scheduling,
Rescheduling, and Open-Shop Scheduling Problems, in: Proceedings of the Fifth International
Conference on Genetic Algorithms, S. Forrest (ed.), San Mateo, 375-382.

Fisher, H. and G.L. Thompson (1963): Probabilistic Learning Combinations of Local Job-Shop Sche-
duling Rules, in: Industrial Scheduling, J.F. Muth and G.L. Thompson (eds.), Englewood Cliffs,
225-251.

Forrest, S. (ed.) (1993): Proceedings of the Fifth International Conference on Genetic Algorithms, San
Mateo.

French, S. (1982): Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop,
Chichester.

An Efficient Scheduling Algorithm Based upon Threshold Accepting - 20 -

Giffler, B. and G.L. Thompson (1960): Algorithms for Solving Production-Scheduling Problems,
Operations Research, 8, 487-503.

Holland, J.H. (1975): Adaptation in natural and artificial systems, Ann Arbor.

Nakano, R. and T. Yamada (1991): Conventional Genetic Algorithm for Job Shop Problems, in:
Proceedings of the Fourth International Conference on Genetic Algorithms, R. Belew and L. Booker
(eds.), San Mateo, 474-479.

Rohmann, T. (1993): Reihenfolgeplanung mit Genetischen Algorithmen am Beispiel der Maschinenbe-
legungsplanung, Dissertation, University of Münster, Institute of Business Informatics, Münster
1993.

Yamada, T. and R. Nakano (1992): A Genetic Algorithm Applicable to Large-Scale Job-Shop Prob-
lems, in: Parallel Problem Solving from Nature 2, Männer, B. and B. Manderick (eds.), Amsterdam
et al., 281-290.

UNIVERSITY OF LEIPZIG

Institute of Production Management and Industrial Information Management

- Reports -

No. 1: Zelewski, Stephan: Das Konzept technologischer Theorietransformationen - eine Analyse

aus produktionswirtschaftlicher Perspektive, Leipzig 1994.

No. 2: Siedentopf, Jukka: Anwendung und Beurteilung heuristischer Verbesserungsverfahren für

die Maschinenbelegungsplanung - Ein exemplarischer Vergleich zwischen Neuronalen

Netzwerken, Simulated Annealing und genetischen Algorithmen, Leipzig 1994.

No. 3: Zelewski, Stephan: Unternehmenskrisen und Konzepte zu ihrer Bewältigung, Leipzig 1994.

No. 4: Siedentopf, Jukka: Ein effizienter Scheduling-Algorithmus auf Basis des Threshold Accep-

ting, Leipzig 1995.

No. 5: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 1: Exposition, Leipzig 1995.

No. 6: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 2: Bezugsrahmen, Leipzig 1995.

No. 7: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 3: Einführung in Stelle/Transition-Netze, Leipzig 1995.

No. 8: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 4: Verfeinerungen von Stelle/Transition-Netzen, Leipzig 1995.

No. 9: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 5: Einführung in Synthetische Netze, Teilband 5.1: Darstellung des Kern-

konzepts, Leipzig 1995.

No. 10: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 5: Einführung in Synthetische Netze, Teilband 5.2: Auswertungsmöglich-

keiten, Leipzig 1995.

No. 11: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 6: Erweiterungen von Synthetischen Netzen, Leipzig 1995.

No. 12: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 7: Fallstudie, Leipzig 1995.

No. 13: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 8: Charakterisierung des Petrinetz-Konzepts, Leipzig 1995.

No. 14: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 9: Beurteilung des Petrinetz-Konzepts, Leipzig 1995.

No. 15: Zelewski, Stephan: Petrinetzbasierte Modellierung komplexer Produktionssysteme (Projekt

PEMOPS), Band 10: Petrinetz-Literatur, Leipzig 1995.

No. 16: Siedentopf, Jukka: An Efficient Scheduling Algorithm Based upon Threshold Accepting,

Leipzig 1995.

No. 17: Siedentopf, Jukka: The Threshold Waving Algorithm for Job Shop Scheduling, Leipzig

1995.

